PCA dual problem (cont.)

And using the orthogonality of the columns of \tilde{X} and G

$$
\begin{aligned}
& \breve{B}^{t} \hat{\Sigma} G=\breve{B}^{t}\left(\tilde{X} \tilde{X}^{t}\right) G=\left(\breve{B}^{t} \tilde{X}\right)\left(\tilde{X}^{t} G\right)=\left(\breve{B}^{t} \tilde{X}\right) 0=0_{n \times(d-n)} \\
& G^{t} \hat{\Sigma} \breve{B}=G^{t}\left(\tilde{X} \tilde{X}^{t}\right) \breve{B}=\left(G^{t} \tilde{X}\right)\left(\tilde{X}^{t} \breve{B}\right)=0\left(\tilde{X}^{t} \breve{B}\right)=0_{(d-n) \times n} \\
& G^{t} \hat{\Sigma} G=G^{t}\left(\tilde{X} \tilde{X}^{t}\right) G=\left(G^{t} \tilde{X}\right)\left(\tilde{X}^{t} G\right)=0 \cdot 0=0_{(d-n) \times(d-n)}
\end{aligned}
$$

PCA dual problem (cont.)

Thus:

$$
B^{t} \hat{\Sigma} B=\left(\begin{array}{rr}
D^{*} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cccccc}
\lambda_{1} & 0 & & \cdots & & 0 \\
0 & \ddots & & & & \\
& & \lambda_{n} & \ddots & & \vdots \\
\vdots & & \ddots & 0 & & \\
& & & & \ddots & 0 \\
0 & & \cdots & & 0 & 0
\end{array}\right)=D
$$

PCA dual problem (cont.)

Aside about orthogonal component G :

Usually don't need to compute,
Since only care about "eigenvectors for non-zero eigenvalues"
[go to next pages]

