PCA dual problem (cont.)

Thus:

- could do SVD of \tilde{X}, to compute Eigen-analysis
- i.e. replace $d \times d$ analysis by $d \times n$
- Singular Values are $\pm \sqrt{ }$ of cov. matrix eigenvalues
- (usually taken as + square-root)
- Columns of U can be used for PCA projections
- since they are the eigenvectors (i.e. $B=U$)
- so PCA is both:
- eigen-decomposition of covariance matrix
- singular value decomposition of data matrix

PCA dual problem (cont.)

Improve to $n \times n$ analysis?

Can make U and V "change places" by considering \tilde{X}^{t}
Singular Value Decomposition is:

$$
\tilde{X}^{t}=\left(U S V^{t}\right)^{t}=V S^{t} U^{t}
$$

Sizes are useful:

$$
n \times d=n \times n \leftrightarrow n \times d \leftrightarrow d \times d
$$

Return to an eigen representation as:

$$
\tilde{X}^{t} \tilde{X}=V S^{t} U^{t}\left(U S V^{t}\right)=V S^{t} S V^{t}
$$

PCA dual problem (cont.)

Again for $n<d$:
$S=\left(\begin{array}{ccc}s_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & s_{n} \\ 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0\end{array}\right)_{d \times n}$, so define $D^{*}=S^{t} S=\left(\begin{array}{ccc}s_{1}^{2} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & s_{n}^{2}\end{array}\right)_{n \times n}$
and define $\quad B^{*}=V, \quad$ to give

$$
\tilde{X}^{\prime} \tilde{X}=B^{*} D^{*}\left(B^{*}\right)^{x}
$$

the "dual" eigen represntation

PCA dual problem (cont.)

Have "dual eigen problem", where

- Treat \tilde{X}^{t} as "data matrix"
- i.e. rows of data matrix \tilde{X} are replaced by columns
- Based on "dual covariance matrix" $\hat{\Sigma}_{n \times n}^{*}=\tilde{X}^{t} \tilde{X}$
- "inner product of data matrix"
- compared to "outer product" for calculation of $\hat{\Sigma}_{d \times d}=\tilde{X} \tilde{X}^{t}$
- for $n<d$, have faster $n \times n$ eigen-calculation
[go to next page]

