ORIE 779: Functional Data Analysis

From last meeting

Review of Linear Algebra

- norms, inner products, orthonormal bases \& projections
- singular value and eigen decompositions

Review of Multivariate Probability

- theoretical and empirical mean vectors
- theoretical and empirical covariance matrices

Mathematics behind PCA

- "Rotate data" using eigen-decomp. of covariance matrix
- Then optimization problem(s) are simple

PCA dual problem

Idea: Recall for HDLSS settings:

$$
\text { Sample size }=n<d=\text { dimension }
$$

So $\operatorname{rank}(\hat{\Sigma}) \leq n, \quad$ and $\quad \lambda_{n+1}=\lambda_{d}=0$

Thus have "really only n dimensional eigen problem"

Can exploit this to boost computation speed

Again use notation: $\quad \tilde{X}=\frac{1}{\sqrt{n-1}}\left(\begin{array}{lll}\underline{X_{1}}-\underline{\bar{X}} & \cdots & X_{n}-\underline{\bar{X}}\end{array}\right)_{d \times n}$

PCA dual problem (cont.)

Recall: $\quad \hat{\Sigma}_{d \times d}=\tilde{X} \tilde{X}^{t}$ has the eigenvalue decomp. $\hat{\Sigma}=B D B^{t}$

Study via Singular Value Decomposition of \tilde{X} :

$$
\tilde{X}=U S V^{t}, \quad \text { where } \quad U^{t} U=V^{t} V=I
$$

giving:

$$
\hat{\Sigma}=\tilde{X} \widetilde{X}^{t}=\left(U S V^{t}\right)\left(U S V^{t}\right)^{t}=U S V^{t} V S^{t} U^{t}=U S S^{t} U^{t}
$$

By uniqueness of eigen-analysis, have (except for order):

$$
B=U \quad D=S S^{t}
$$

PCA dual problem (cont.)

For $n<d$:

$$
S=\left(\begin{array}{ccc}
s_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & s_{n} \\
0 & \cdots & 0 \\
\vdots & & \vdots \\
0 & \cdots & 0
\end{array}\right)_{d \times n} \text {, so } D=S S^{t}=\left(\begin{array}{cccccc}
s_{1}^{2} & 0 & & \cdots & & 0 \\
0 & \ddots & & & & \\
& & s_{n}^{2} & \ddots & & \vdots \\
\vdots & & \ddots & 0 & & \\
& & & & \ddots & 0 \\
0 & & \cdots & & 0 & 0
\end{array}\right)_{d \times d}
$$

[go to next page]

