PCA as an optimization problem

Find "direction of greatest variability" [toy graphid]

Given a "direction vector", $\underline{u} \in \mathfrak{R}^{d}$ (i.e. $\|\underline{u}\|=1$)

Projection of $\underline{X_{i}}-\underline{\bar{X}}$ in the direction $\underline{u}: P_{\underline{u}}\left(\underline{X_{i}}-\underline{\bar{X}}\right)=\left\langle\underline{X_{i}}-\underline{\bar{X}}, \underline{u}\right\rangle \underline{u}$

Variability in the direction \underline{u} :

$$
\begin{gathered}
\sum_{i=1}^{n}\left\|P_{\underline{\underline{ }}}\left(\underline{X_{i}}-\underline{\bar{X}}\right)\right\|^{2}=\sum_{i=1}^{n}\left\|\left\langle\underline{X_{i}}-\underline{\bar{X}}, \underline{u}\right) \underline{u}\right\|^{2}=\sum_{i=1}^{n}\left\langle\underline{X_{i}}-\underline{\bar{X}}, \underline{u}\right\rangle^{2}\|\underline{u}\|^{2}= \\
=\sum_{i=1}^{n}\left\langle\underline{X_{i}}-\underline{\bar{X}}, \underline{u}\right\rangle^{2}=\sum_{i=1}^{n}\left(\left(\underline{X_{i}}-\underline{\bar{X}}\right)^{t} \underline{u}\right)^{2}= \\
=\sum_{i=1}^{n} \underline{u}^{t}\left(\underline{X_{i}}-\underline{\bar{X}}\right)\left(\underline{X_{i}}-\underline{\bar{X}}\right)^{t} \underline{u}=
\end{gathered}
$$

PCA as an optimization problem (cont.)

Variability in the direction \underline{u} :

$$
\sum_{i=1}^{n}\left|P_{\underline{v}}\left(\underline{X_{i}}-\underline{\bar{X}}\right)\right|^{2}=\underline{u}^{t}\left(\sum_{i=1}^{n}\left(\underline{X_{i}}-\underline{\bar{X}}\right)\left(\underline{X_{i}}-\underline{\bar{X}}\right)^{t}\right) \underline{u}=(n-1) \underline{u}^{t} \hat{\hat{\Sigma}} \underline{u}
$$

i.e. (proportional to) a "quadratic form in the covariance matrix"

Simple solution comes from eigenvalue representation of $\hat{\Sigma}$:

$$
\hat{\Sigma}=B D B^{t}
$$

where $B=\left(\underline{v_{1}}, \ldots, \underline{v_{d}}\right)$ is orthonormal, and $D=\left(\begin{array}{ccc}\lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{d}\end{array}\right)$

PCA as an optimization problem (cont.)

Variability in the direction \underline{u} :

$$
\sum_{i=1}^{n} \|\left. P_{\underline{u}}\left(\underline{X_{i}}-\underline{\bar{X}}\right)\right|^{2}=(n-1) \underline{u}^{t}\left(B D B^{t}\right) \underline{u}=(n-1)\left(\underline{u}^{t} B\right) D\left(B^{t} \underline{u}\right)
$$

But $B^{t} \underline{u}=\left(\begin{array}{c}\underline{v_{1}} \\ \vdots \\ \underline{v}_{d}{ }^{t}\end{array}\right) \underline{u}=\left(\begin{array}{c}\left\langle\underline{v_{1}}, \underline{u}\right\rangle \\ \vdots \\ \left\langle\underline{v_{d}}, \underline{u}\right\rangle\end{array}\right)=$ " B transform of u "

$$
=" u \text { rotated into } B \text { coordinates", }
$$

and the "diagonal quadratic form" becomes

$$
\sum_{i=1}^{n}\left|P_{\underline{u}}\left(\underline{X_{i}}-\underline{\bar{X}}\right)\right|^{2}=(n-1) \sum_{j=1}^{d} \lambda_{j}\left\langle\underline{v_{j}}, \underline{u}\right\rangle^{2}
$$

PCA as an optimization problem (cont.)

Now since B is an orthonormal basis matrix,

$$
\underline{u}=\sum_{j=1}^{d}\left\langle\underline{v_{j}}, \underline{u}\right\rangle \underline{v_{j}} \quad \text { and } \quad 1=\|\underline{u}\|^{2}=\sum_{j=1}^{d}\left\langle\underline{v_{j}}, \underline{u}\right\rangle^{2}
$$

So the rotation $B^{t} \underline{u}=\left(\begin{array}{c}\left\langle\underline{v_{1}}, \underline{u}\right\rangle \\ \vdots \\ \left\langle\underline{v_{d}}, \underline{u}\right\rangle\end{array}\right)$ gives a "distribution of the (unit)
energy of \underline{u} over the $\hat{\Sigma}$ eigen-directions"
And $\sum_{i=1}^{n} \|\left. P_{\underline{u}}\left(\underline{X_{i}}-\underline{\bar{X}}\right)\right|^{2}=(n-1) \sum_{j=1}^{d} \lambda_{j}\left\langle\underline{v_{j}}, \underline{u}\right\rangle^{2}$ is maximized (over \underline{u}),
by putting all energy in the "largest direction", i.e. $\underline{u}=\underline{v_{1}}$,
where "eigenvalues are ordered", $\quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}$

PCA as an optimization problem (cont.)

Notes:

- Solution is unique when $\lambda_{1}>\lambda_{2}$
- Otherwise have solutions in "subspace gen'd by $1^{\text {st }} \underline{v} s$ "
- Projecting onto subsp. \perp to v_{1}, gives \underline{v}_{2} as "next dir'n" [Toy Graphid]
- Continue through $\underline{v_{3}}, \ldots, \underline{v_{d}}$
- Replace $\hat{\Sigma}$ by Σ to get "theoretical PCA"
- Which is "estimated" by the empirical version

Go to next part

