Linear Algebra Review, (cont.)

Eigenvalue Decomposition:
For a (symmetric) square matrix $\quad X_{d \times d}$
Find a diagonal matrix $\quad D=\left(\begin{array}{ccc}\lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{d}\end{array}\right)$
And an orthonormal matrix $\quad B_{d \times d} \quad$ (i.e. $B^{t} \cdot B=B \cdot B^{t}=I_{d \times d}$)

So that: $\quad X \cdot B=B \cdot D, \quad$ i.e. $\quad X=B \cdot D \cdot B^{t}$

Linear Algebra Review, (cont.)

Eigenvalue Decomposition (cont.):

Relation to Singular Value Decomposition (looks similar?):

- Eigenvalue decomposition "harder"
- \quad Since needs $U=V$
- Price is eigenvalue decomp'n is generally complex
- Except for X square and symmetric
- Then eigenvalue decomposition is real valued
- \quad Thus it is the sing'r value decomp. with $U=V=B$

Linear Algebra Review, (cont.)

Computation of Singular Value and Eigenvalue Decompositions:

- Details too complex to spend time here
- A "primitive" of good software packages
- Eigenvalues $\lambda_{1}, \ldots, \lambda_{d}$ are unique
- Columns of $B=\left(\begin{array}{lll}v_{1} & \cdots & v_{d}\end{array}\right)$ are called "eigenvectors"
- Eigenvectors are " λ-stretched" by X :

$$
X \cdot \underline{v_{i}}=\lambda_{i} \cdot \underline{v_{i}}
$$

Linear Algebra Review, (cont.)

Eigenvalue Decomposition solves matrix problems:

- Inversion: $\quad X^{-1}=B \cdot\left(\begin{array}{ccc}\lambda_{1}^{-1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{d}^{-1}\end{array}\right) \cdot B^{t}$
- Square Root: $X^{1 / 2}=B \cdot\left(\begin{array}{ccc}\lambda_{1}^{1 / 2} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{d}^{1 / 2}\end{array}\right) \cdot B^{t}$
- $\operatorname{rank}(X)=\#\left\{\lambda_{i}: \lambda_{i} \neq 0\right\}$
- X is positive (nonnegative, i.e. semi) definite \Leftrightarrow

$$
\Leftrightarrow \quad \text { all } \lambda_{i}>(\geq) 0
$$

[go to next part]

