Linear Algebra Review, (cont.)

Projection using orthonormal basis $\underline{v}_{1}, \ldots,,_{n}$:

- Basis matrix is "orthonormal": $\quad B_{V}^{t} B_{V}=I_{n \times n}$

$$
\left(\begin{array}{c}
\underline{v_{1}^{t}} \\
\vdots \\
\underline{v_{n}^{t}}
\end{array}\right)\left(\begin{array}{lll}
v_{1} & \cdots & \underline{v_{n}}
\end{array}\right)=\left(\begin{array}{ccc}
\left\langle\underline{v_{1}}, \underline{v_{1}}\right\rangle & \cdots & \left\langle\underline{v_{1}}, \underline{v_{n}}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle\underline{v_{n}}, \underline{v_{1}}\right\rangle & \cdots & \left\langle\underline{v_{n}}, \underline{v_{n}}\right\rangle
\end{array}\right)=\left(\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right)
$$

- So $P_{V} \underline{x}=B_{V}\left(B_{V}^{t} \underline{x}\right)=\operatorname{Recon}($ Coeffs of \underline{x} "in V dir'n")
- For "orthogonal complement", V^{\perp},

$$
\underline{x}=P_{V} \underline{x}+P_{V^{\perp}} \underline{x} \quad \text { and } \quad\|\underline{x}\|^{2}=\left\|P_{V} \underline{x}\right\|^{2}+\left\|P_{V^{\perp}} \underline{x}\right\|^{2}
$$

- Parseval inequality: $\left\|P_{v} \leq\right\|^{2} \leq|\underline{x}|^{2}=\sum_{i=1}^{n}\left\langle\underline{x}, v_{i}\right\rangle^{2}=\sum_{i=1}^{n} a_{i}^{2}=|a|^{2}$

Linear Algebra Review, (cont.)

(Real) Unitary Matrices: $U_{d \times d}$ with $U^{t} U=I$

- Orthonormal basis matrix (so all of above applies)
- Follows that $U U^{t}=I$
- (since have full rank, so U^{-1} exists ...)
- Linear transform (mult'n by U) is like "rotation" of \Re^{d}
- But also includes "mirror images"

Linear Algebra Review, (cont.)

Singular Value Decomposition:
For a matrix $\quad X_{d \times n}$

Find a diagonal matrix $S_{d \times n}$,
with entries $s_{1}, \ldots, s_{\min (d, n)}$ - called singular values

And unitary (rotation) matrices $U_{d \times d}, V_{n \times n}$ (recall $U^{t} U=V^{t} V=I$)
so that

$$
X=U S V^{t}
$$

Linear Algebra Review, (cont.)

Intuition behind Singular Value Decomposition:

For X a "linear transformation" (via matrix multiplication)

- $\quad X \cdot \underline{v}=\left(U \cdot S \cdot V^{t}\right) \cdot \underline{v}=U \cdot\left(S \cdot\left(V^{t} \cdot \underline{v}\right)\right)$
- First "rotate"
- Second "rescale coordinate axes (by s_{i})"
- Third "rotate again"
- i.e. have "diagonalized the transformation"
[go to next part]

