ORIE 779: Functional Data Analysis

From last meeting

Finished Robust FDA: Elliptical Mean \& PCA

- Cornea Data
- Parabolas with 2 outliers

From last meeting (cont.)

Started detailed look at PCA

Three important (and interesting) viewpoints:

1. Mathematics
2. Numerics
3. Statistics

Linear Algebra Review, (cont.)

Norm of a vector:

- in $\mathfrak{R}^{d}, \quad\|\underline{x}\|=\left(\sum_{j=1}^{d} x_{j}^{2}\right)^{1 / 2}=\left(\underline{x}^{t} \underline{x}\right)^{1 / 2}$
- Idea: "length" of the vector
- Note: \exists strange properties for high d, e.g. "length of diagonal of unit cube" $=\sqrt{d}$
- "length normalized vector": $\frac{\underline{x}}{\|\underline{x}\|}$
(has length one, this is on surface of unit sphere)
- get "distance" as: $d(\underline{x}, \underline{y})=\|\underline{x}-\underline{y}\|=\sqrt{(\underline{x}-\underline{y})^{t}(\underline{x}-\underline{y})}$

Linear Algebra Review, (cont.)

Inner (dot, scalar) product:

- for vectors \underline{x} and $\underline{y}, \quad\langle\underline{x}, \underline{y}\rangle=\sum_{j=1}^{d} x_{j} y_{j}=\underline{x}^{t} \underline{y}$
- related to norm, via $\|\underline{x}\|=\sqrt{\langle\underline{x}, \underline{x}\rangle}=\sqrt{\underline{x}^{t} \underline{x}}$
- measures "angle between \underline{x} and \underline{y} " as:

$$
\operatorname{angle}(\underline{x}, \underline{y})=\cos ^{-1}\left(\frac{\langle\underline{x}, \underline{y}\rangle}{\|\underline{x}\| \cdot\|\underline{y}\|}\right)=\cos ^{-1}\left(\frac{\underline{x}^{t} \underline{y}}{\sqrt{\underline{x}^{t} \underline{x} \cdot \underline{y}^{t} \underline{y}}}\right)
$$

- key to "orthogonality", i.e. "perpendicularity":

$$
\underline{x} \perp \underline{y} \text { if and only if }\langle\underline{x}, \underline{y}\rangle=0
$$

Linear Algebra Review, (cont.)

Orthonormal basis $\underline{v_{1}, \ldots, v_{n}}$:

- All ortho to each other, i.e. $\left\langle\underline{v_{i}}, v_{i^{\prime}}\right\rangle=0$, for $i \neq i^{\prime}$
- All have length 1, i.e. $\left\langle\underline{v_{i}}, \underline{v_{i}}\right\rangle=1$, for $i=1, \ldots, n$
- "Spectral Representation": $\underline{x}=\sum_{i=1}^{n} a_{i} \underline{v_{i}}$ where $a_{i}=\left\langle\underline{x}, \underline{v_{i}}\right\rangle$
check: $\left\langle\underline{x}, \underline{v_{i}}\right\rangle=\left\langle\sum_{i^{\prime}=1}^{n} a_{i^{\prime}}, \underline{v_{i}}, \underline{v_{i}}\right\rangle=\sum_{i^{\prime}=1}^{n} a_{i^{\prime}}\left\langle\underline{v_{i}}, \underline{v_{i}}\right\rangle=a_{i}$
- Matrix notation: $\underline{x}=B \underline{a}$ where $\underline{a}^{t}=\underline{x}^{t} B$ i.e. $\underline{a}=B^{t} \underline{x}$
- \underline{a} is called "transform (e.g. Fourier, wavelet) of \underline{x} "

Linear Algebra Review, (cont.)

Parseval identity, for \underline{x} in subsp. gen'd by o. n . basis $\underline{v_{1}}, \ldots, \underline{v}_{n}$:

- $\|\underline{x}\|^{2}=\sum_{i=1}^{n}\left\langle\underline{x}, \underline{v_{i}}\right\rangle^{2}=\sum_{i=1}^{n} a_{i}^{2}=\|\underline{a}\|^{2}$
- Pythagorean theorem
- "Decomposition of Energy"
- ANOVA - sums of squares
- Transform, \underline{a}, has same length as \underline{x}, i.e. "rotation in $\mathfrak{R}^{d "}$

Linear Algebra Review, (cont.)

Projection of a vector \underline{x} onto a subspace V :

- Idea: member of V that is closest to \underline{x} (i.e. "approx'n")
- Find $P_{V} \underline{x} \in V$ that solves: $\min _{v \in V}\|\underline{x}-\underline{v}\| \quad$ ("least squares")
- For inner product (Hilbert) space: exists and is unique
- General solution in \mathfrak{R}^{d} : for basis matrix B_{V}

$$
P_{V} \underline{x}=B_{V}\left(B_{V}^{t} B_{V}\right)^{-1} B_{V}^{t} \underline{x}
$$

- So "proj'n operator" is "matrix mult'n": $P_{V}=B_{V}\left(B_{V}^{t} B_{V}\right)^{-1} B_{V}^{t}$
(thus projection is another linear operation) (note same operation underlies "least squares")
[go to next part]

