ORIE 779: Functional Data Analysis

From last meeting

Finished Robust FDA: Elliptical Mean & PCA

- Cornea Data

- Parabolas with 2 outliers

From last meeting (cont.)

Started detailed look at PCA

Three important (and interesting) viewpoints:

- 1. Mathematics
- 2. Numerics
- 3. Statistics

Norm of a vector:

- in
$$\Re^d$$
, $\|\underline{x}\| = \left(\sum_{j=1}^d x_j^2\right)^{1/2} = \left(\underline{x}^t \underline{x}\right)^{1/2}$

- Idea: "length" of the vector
- Note: \exists strange properties for high d, e.g. "length of diagonal of unit cube" = \sqrt{d}
- "length normalized vector": $\frac{\underline{x}}{\|\underline{x}\|}$ (has length one, this is on surface of unit sphere)
- get "distance" as: $d(\underline{x}, \underline{y}) = \|\underline{x} \underline{y}\| = \sqrt{(\underline{x} \underline{y})^t (\underline{x} \underline{y})}$

Inner (dot, scalar) product:

- for vectors
$$\underline{x}$$
 and \underline{y} , $\langle \underline{x}, \underline{y} \rangle = \sum_{j=1}^{d} x_j y_j = \underline{x}^t \underline{y}$

- related to norm, via $\|\underline{x}\| = \sqrt{\langle \underline{x}, \underline{x} \rangle} = \sqrt{\underline{x}^t \underline{x}}$

- measures "angle between \underline{x} and \underline{y} " as:

$$angle(\underline{x}, \underline{y}) = \cos^{-1}\left(\frac{\langle \underline{x}, \underline{y} \rangle}{\|\underline{x}\| \cdot \|\underline{y}\|}\right) = \cos^{-1}\left(\frac{\underline{x}^{t} \underline{y}}{\sqrt{\underline{x}^{t} \underline{x} \cdot \underline{y}^{t} \underline{y}}}\right)$$

- key to "orthogonality", i.e. "perpendicularity": $\underline{x}\perp\underline{y}$ if and only if $\langle \underline{x}, \underline{y} \rangle = 0$

Orthonormal basis $\underline{v_1}, ..., \underline{v_n}$:

- All ortho to each other, i.e. $\langle \underline{v}_i, \underline{v}_i \rangle = 0$, for $i \neq i'$
- All have length 1, i.e. $\langle \underline{v}_i, \underline{v}_i \rangle = 1$, for i = 1, ..., n
- "Spectral Representation": $\underline{x} = \sum_{i=1}^{n} a_i \underline{v}_i$ where $a_i = \langle \underline{x}, \underline{v}_i \rangle$ check: $\langle \underline{x}, \underline{v}_i \rangle = \langle \sum_{i'=1}^{n} a_{i'} \underline{v}_{i'}, \underline{v}_i \rangle = \sum_{i'=1}^{n} a_{i'} \langle \underline{v}_{i'}, \underline{v}_i \rangle = a_i$
- Matrix notation: $\underline{x} = B\underline{a}$ where $\underline{a}^{t} = \underline{x}^{t}B$ i.e. $\underline{a} = B^{t}\underline{x}$
- \underline{a} is called "transform (e.g. Fourier, wavelet) of \underline{x} "

Parseval identity, for \underline{x} in subsp. gen'd by o. n. basis $\underline{v}_1, \dots, \underline{v}_n$:

-
$$\left\|\underline{x}\right\|^2 = \sum_{i=1}^n \left\langle \underline{x}, \underline{v}_i \right\rangle^2 = \sum_{i=1}^n a_i^2 = \left\|\underline{a}\right\|^2$$

- Pythagorean theorem
- "Decomposition of Energy"
- ANOVA sums of squares
- Transform, \underline{a} , has same length as \underline{x} , i.e. "rotation in \Re^{d} "

Projection of a vector \underline{x} onto a subspace V:

- Idea: member of V that is closest to \underline{x} (i.e. "approx'n")
- Find $P_V \underline{x} \in V$ that solves: $\min_{v \in V} ||\underline{x} \underline{v}||$ ("least squares")
- For inner product (Hilbert) space: exists and is unique
- General solution in \Re^d : for basis matrix B_V $P_V x = B_V (B_V^t B_V)^{-1} B_V^t x$
- So "proj'n operator" is "matrix mult'n": $P_V = B_V (B_V^t B_V)^{-1} B_V^t$ (thus projection is another linear operation) (note same operation underlies "least squares")

[go to next part]