ORIE 779: Functional Data Analysis

From last meeting

Robust Functional Data Analysis
Several "multivariate medians"
i. Coordinate-wise median

- not rotation invariant (2-d data uniform on "L")
- can lie on convex hull of data (same example)
- thus poor notion of "center"
ii. Simplicial depth (a. k. a. "data depth")
- slow to compute

From last meeting (cont.)
iii. Huber's L^{p} M-estimate:
[toy data illustration]
"slide sphere around until mean (of projected data) is at center"

Approaches to Robust PCA:

1. Robust Estimation of Covariance Matrix

Major problem 1: hard to get non-negative definiteness
Major problem 2: High Dimension Low Sample Size
2. Projection Pursuit

Major problem: slow to compute

From last meeting (cont.)

Approaches to Robust PCA (cont.):
3. Spherical PCA

Idea: use "projection to sphere" idea from $L^{1} \quad$ M-estimation In particular project data to centered sphere
[toy conventional PCA]
[toy spherical PCA]

- "hot dog" of data becomes "ice caps"
- easily found by PCA
- outliers "pulled in to reduce influence"
- radius of sphere unimportant

Problem: "whitening" (i.e. magnificat'n of high frequency terms)

From last meeting (cont.)

Solution: "Elliptical Analysis"

Main idea: project data onto "suitable ellipse", not sphere
Simple Implementation: via coordinate axis rescaling

1. Divide each axis by MAD
2. Project Data to sphere (in transformed space)
3. Return to original space (mul'ply by orig'I MAD) for analysis

Where $\mathrm{MAD}=$ Median Absolute Deviation (from median)

$$
=\operatorname{median}\left|x_{i}-\operatorname{median}\left(x_{i}\right)\right|
$$

Robust Functional Data Analysis (cont.)

Elliptical Estimate of "center":
Do L^{1} M-estimation in transformed space (then transform back)

Results for cornea data:
Sample Mean
Spherical Center
Elliptical Center

- Elliptical clearly best
- Nearly no edge effect

Robust Functional Data Analysis (cont.)

Elliptical PCA: Do PCA on data projected to ellipse

Recall Toy Example, Parabolas with an outlier

- Spherical \& Elliptical are very nearly the same
- since scales nearly same in coordinate directions
- but a few small differences (study SS's)

Robust Functional Data Analysis (cont.)

Elliptical PCA for cornea data:

Original PC1, Elliptical PC1

- Still finds "overall curvature \& correlated astigmatism"
- Minor edge effects almost completely gone

Original PC2, Elliptical PC?

- Huge edge effects dramatically reduced
- Still find "steeper superior vs. inferior"

Robust Functional Data Analysis (cont.)

Elliptical PCA for cornea data (cont.):

Original PCB, Elliptical PCB

- Edge effects greatly diminished
- But some of "against the rule astigmatism" also lost
- Price paid for robustness

Original PCA, Elliptical PC4

- Now looks more like variation on astigmatism???

Robust Functional Data Analysis (cont.)

Another population of corneas:

Kerataconus: "regions (cones) of very sharp curvature"

Raw Data (bright red cones)

Structure of the population?
Try PCA

Robust Functional Data Analysis (cont.)

Conventional PCA for Kerataconic Population

- Mean shows an "average cone"
- Mean affected by edge effects
- Major edge effects in all PC directions
- Thus strong need for robust PCA (e.g. elliptical)
- PC1 is "width of cone" (\& outlier)
- PC2 is "horizontal location of cone"
- PC3 \& PC4 also about location of cone

Robust Functional Data Analysis (cont.)

Elliptical PCA for Kerataconic Population:

- Edge Effects greatly diminished
- Mean similar, but narrower (in middle) \& no edge effect
- PC1 is "width and strength of cone"
- PC2 is "narrow sharpness of cone"
- PC3 is "horizontal location"
- PC4 is outlier driven
- So elliptical PCA is not perfect

Robust Functional Data Analysis (cont.)

Disclaimer about robust analysis of Cornea Data:

Critical parameter is "radius of analysis", R_{0}
$R_{0}=4 \mathrm{~mm}$: Shown above, Elliptical PCA very effective
$R_{0}=4.2 \mathrm{~mm}: \quad$ Stronger edge effects, Elliptical PCA less useful
$R_{0}=3.5 \mathrm{~mm}$: Edge effects weaker, don't need robust PCA

Robust Functional Data Analysis (cont.)

One more Toy Example: Same Parabolas, with 2 outliers

> Raw Data

Outliers chosen to be "orthogonal"

- $1^{\text {st }}$ is "highest Fourier frequency"
- $\quad 2^{\text {nd }}$ outlier is (rescaled) " 2 nd $h i g h e s t ~ F o u r i e r ~ f r e q u e n c y " ~$
- (will explain this later)

Robust Functional Data Analysis (cont.)

Toy Example: Parabolas, with 2 outliers (cont.)

Standard PCA:

- PC1 still "vertical shift, affected by $1^{\text {st }}$ outlier"
- PC2 still $1^{\text {st }}$ outlier
- Makes sense since "less variation" in $2^{\text {nd }}$ outlier (than $1^{\text {st }}$)
- PC3 \& PC4 a "muddling" of $2^{\text {nd }}$ outlier and "slant"
- "Dir'n of greatest var'n", may not be "most useful dir'n"
- Also unclear desired dir'ns are orthogonal (but PCA is)

Robust Functional Data Analysis (cont.)

Toy Example: Parabolas, with 2 outliers (cont.)

Standard PCA (cont.): Some approaches:

- Interactive choice of some basis directions:
- E.g. choose $3^{\text {rd }}$ direction by $2^{\text {nd }}$ outlier
- Could also choose $1^{\text {st }}$ dir'n to be exactly "vertical shift"
- Generally useful, but will require "art" (i.e. expertise)
- VARIMAX rotation of subspaces
- From Section 6.3.3 of Ramsey and Silverman (1997)
- A good topic for student presentation
- Robust Spherical PCA

Robust Functional Data Analysis (cont.)

Toy Example: Parabolas, with 2 outliers (cont.)

Robust Spherical PCA

- Center: L1 M-est. avoids "sharp corners"
- PC1: same good job, with "vertical shift"
- PC2: still nicely shows "slant"
- Remaining PCs: Outliers now "separated"
- Again PC directions "not best"?
- Which PCs do explain outliers?

Robust Functional Data Analysis (cont.)

Toy Example: Parabolas, with 2 outliers (cont.)

Spherical PCA, PC5-9:

- Outliers spread over all remaining PCs
- So goal of "downweighting outliers" was achieved
- I.e. outliers have nearly no effect on PC directions
- Good? Or bad?
- Depends on context (outliers worthwhile or distracting?)

Deeper look at PCA

Now know usefulness of PCA, so let's "look under the hood"

Three important (and interesting) viewpoints:

1. Mathematics
2. Numerics
3. Statistics

First: Review linear algebra and multivariate probability

Linear Algebra Review

Vector Space:

- set of "vectors", \underline{x},
- and "scalars" (coefficients), a
- "closed" under "linear combination" ($\sum_{i} a_{i} x_{i}$ in space)
- e.g. $\mathfrak{R}^{d}=\left\{\underline{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{d}\end{array}\right): x_{1}, \ldots, x_{d} \in \mathfrak{R}\right\}, " d$ dim Euclid'n space"

Linear Algebra Review, (cont.)

Subspace:

- subset that is again a vector space
- i.e. closed under linear combination
- e.g. lines through the origin
- e.g. planes through the origin
- e.g. subspace "generated by" a set of vectors (all linear combos of them =
= containing hyperplane through origin)

Linear Algebra Review, (cont.)

Basis of subspace: set of vectors that:

- "span", i.e. everything is a linear combo of them
- are "linearly independent", i.e. linear combo is unique
- e.g. \mathfrak{R}^{d} "unit vector basis" $\left\{\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right), \ldots,\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ 1\end{array}\right)\right\}$
- e.g. $\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{d}\end{array}\right)=x_{1}\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right)+x_{2}\left(\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right)+\cdots+x_{d}\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ 1\end{array}\right)$

Linear Algebra Review, (cont.)

Basis Matrix, of subspace of \Re^{d}
Given a basis, $\underline{v}_{1}, \ldots, v_{n}$, create "matrix of columns":

$$
B=\left(\begin{array}{lll}
\underline{v_{1}} & \cdots & \underline{v_{n}}
\end{array}\right)=\left(\begin{array}{ccc}
v_{11} & & v_{n 1} \\
\vdots & \cdots & \vdots \\
v_{1 d} & & v_{n d}
\end{array}\right)_{d \times n}
$$

Then "linear combo" is a matrix multiplication:

$$
\sum_{i=1}^{n} a_{i} \underline{v_{i}}=B \underline{a} \quad \text { where } \quad \underline{a}=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)
$$

Check sizes: $\quad d \times 1=(d \times n) \leftrightarrow(n \times 1)$

Linear Algebra Review, (cont.)

Aside on matrix multiplication: (linear transformation)
For matrices $\quad A=\left(\begin{array}{ccc}a_{1,1} & \cdots & a_{1, m} \\ \vdots & \ddots & \vdots \\ a_{k, 1} & \cdots & a_{k, m}\end{array}\right), \quad B=\left(\begin{array}{ccc}b_{1,1} & \cdots & b_{1, n} \\ \vdots & \ddots & \vdots \\ b_{m, 1} & \cdots & b_{m, n}\end{array}\right)$
Define the "matrix product" $A B=\left(\begin{array}{ccc}\sum_{i=1}^{m} a_{1, i} b_{i, 1} & \cdots & \sum_{i=1}^{m} a_{1, i} b_{i, n} \\ \vdots & \ddots & \vdots \\ \sum_{i=1}^{m} a_{k, i} b_{i, 1} & \cdots & \sum_{i=1}^{m} a_{k, i} b_{i, n}\end{array}\right)$
("inner products" of columns with rows) (composition of linear transformations)

Often useful to check sizes: $\quad k \times n=k \times m \leftrightarrow m \times n$

Linear Algebra Review, (cont.)

Matrix trace:
For a square matrix $\quad A=\left(\begin{array}{ccc}a_{1,1} & \cdots & a_{1, m} \\ \vdots & \ddots & \vdots \\ a_{m, 1} & \cdots & a_{m, m}\end{array}\right)$,
Define $\operatorname{tr}(A)=\sum_{i=1}^{m} a_{i, i}$

Trace commutes with matrix multiplication:

$$
\operatorname{tr}(A B)=\operatorname{tr}(B A)
$$

Linear Algebra Review, (cont.)

Dimension of subspace (a notion of "size"):

- number of elements in a basis (unique)
- $\quad \operatorname{dim}\left(\Re^{d}\right)=d \quad$ (use basis above)
- e.g. dim of a line is 1
- e.g. dim of a plane is 2
- dimension is "degrees of freedom"

