
 
ORIE 779:    Functional Data Analysis 

 
From last meeting 

 
 
Functional Data Analysis: what is the “atom”? 
 
 
Important duality: 
 

Object Space   ↔    Feature Space 
 
 
Powerful method:  Principal Component Analysis 
 
Built Ideas in 2d (where can see everything) 
 



PCA, Point Cloud View 
 
 
 [Spinning point Cloud]    -     [Axis of greatest variability] 
 
 
- “directions of greatest variability” 
 
- “natural coordinate axes” 
 
- “maximal 1-d descriptions of data” 
 
 
Red is 1st PC (dominant direction) 
 
Yellow is 2nd PC (dominant direction in subspace ortho’l to 1st) 
 
Cyan is 3rd PC (dominant direction in ortho’l to 1sttwo) 
 



PCA, Curve View 
 
 
Corresponding to above data:    graphic 
 
 
Top Row:    Mean shift (as before) 
 
 
2nd Row:    Decomposition in 1st PC direction 
 
 
3rd Row:    Decomposition in 2nd PC direction 
 
 
4th Row:    Decomposition in 3rd PC direction 
 
 



PCA for curves, 3d 
 
 
E.g. 1:  “Dog Legs”  (simulated example) [curve view] 
 
 
Guess “structure of population”? 
 
- Mean like “v”? 
- 1x   correlated with  3x ? 
- Intuitive content of dominant direction? 
 
 
Since 3=d ,    try spinning point cloud view 
 
- Can see “one direction will explain a lot of the data”? 
- But “meaning in curve space”???    ( 1x   correlated with  3x ?) 



PCA for curves, 3-d 
 
 
PCA for Dog Legs:    Curve View PCA 
 
 
Mean:  “somewhat tilted V”    (~40% of SS) 
 
 
PC1:  “multiples of symmetric V”    (~92% of MRSS) 
 
 - shows “ 1x   correlated with  3x ”  is a very important aspect 
 



PCA for curves, 3-d (cont.) 
 
 
PCA for Dog Legs (cont.):    Curve View PCA 
 
 
PC2:   “change only in 2x  direction”    (~7% of MRSS) 
 
 
PC3:    “slants”  (note: ortho to PC1 direction)     (1%  of MRSS) 
 
 
Remaining Residuals:     nothing, since in only 3-d 
 
 
 
Note:    overall intuitively & useful “decomposition of variation” 



PCA for curves, 3-d (cont.) 
 
 
A different 3-d example:  Fans     curve data graphic 
 
 
Again guess “population structure”? 
 
- Mean is slanted line? 
- 3x   has most variation? 
- 2x   is correlated with  3x ? 
 
 
Again, since 3=d ,    try spinning point cloud view 
 
- data lie near “slab” (vs. “line” in Dog Legs e.g. above) 
 



PCA for curves, 3-d (cont.) 
 
 
PCA for Fans:    Curve View PCA 
 
Mean:    Slanted Line    (65% of SS) 
 
PC1:    Driven by 3x  variation, with 2x  correlated (86% of MRSS) 
 
PC2:    Part of 2x , that is independent of 3x  (13% of MRSS) 
 
PC3:    all 1x  variation, much smaller (1% of MRSS) 
 
 
Verify in Spinning Point Cloud View and  PC axes view 
 
Note:  "data lie in slab” reflected by large PC2 (than for dog legs) 
 



PCA for curves 
 
 
Now try higher dimension 
 
- no more spinning clouds 
 
- can only use curve view (but now know main ideas) 
 
 
 
Toy Example “Random Parabolas”:    Raw data graphic 
 
 
n = 50  curves in  d = 10 dimensions,           guess structure? 
 
 



PCA for curves (cont.) 
 
 
PCA for Parabolas:    Curve View PCA 
 
Mean:    Captures all of the parabolic structure  (90%  of SS) 
 
 - dominant shape is not part of variation 
 
PC1:    Vertical shift  (88% of MRSS) 
 
 - Can see that in raw data 
 
 - How about structure in PC1 residuals? 
 
PC2:    Tilt  (10% of MRSS) 
 
 - can’t see this in raw data 
 



PCA for curves (cont.) 
 
 
PCA for Parabolas (cont.):    Curve View PCA 
 
 
Remaining PCs: 
 
 - very small fraction of MRSS  (see upper right Power plot) 
 
 - random directions? 
 
 - were simulated as I.I.D. Gaussians 
 
 
Overall:  Intuitive decomposition of “population structure” 
 

- shows features invisible in full data set. 
 



PCA for curves (cont.) 
 
 
Interesting question:    what is PCA for I.I.D. Gaussians? 
 
 
Initial idea:    ),0( IN   random vectors have 
 

“spherically symmetric distribution” 
 
 
So expect: 
 
- random directions 
 
- SS’s evenly separated 



PCA for curves (cont.) 
 
 
Actual answers: 
 
1.    Directions are random 
 
2.     But SS’s depend on sample size 
 
 
Case 1:    Small n:      d = 10,  n = 10    PCA Curve Graphic 
 
 - SS’s are not constant, instead “fall off linearly” 
 
 - Clearly visible in Power Plot (upper right) 
 
 - Because data naturally “extend more in some directions” 



PCA for curves (cont.) 
 
 
Case 2:    Large n:      d = 10,  n = 200    PCA Curve Graphic 
 

- now SS’s look much more constant 
 

- but still some small decrease 
 
 - reason is more data  ⇒  more “large directions” 
 
There is some mathematical theory for this: 
 
 
Johnstone (2001)  On the distribution of the largest principal 

component, Annals of Statistics, 29, 291-327, internet 
available at: 
http://www-stat.stanford.edu/~imj/Reports/2000/largepc.ps 

 



PCA for curves (cont.) 
 
 
One more toy data set:   “2 Clusters”    Raw Data Graphic 
 
Goal:    illustrate use of “smoothed histograms”   (on right)  
 
 
Form of data:   2 “clusters” 
 

- widely separated subpopulations 
 
 
Guess PCA? 
 
 - “Maximal variability” along “skewer between 2 meatballs”? 
 



PCA for curves (cont.) 
 
 
PCA for 2 Clusters Data:  Graphic 
 
 
Mean:    negligible    (only 2% of SS) 
 
 
PC1:    Clearly captures 2 clusters    (93% of MRSS) 
 
 - visible in projection plot  (far left) 
 
 - and also in jitter plot & smooth histo.  (bimodal pop’n) 
 



PCA for curves (cont.) 
 
 
PCA for 2 Clusters Data (cont.):  Graphic 
 
 
PC2:  part of vertical shift, but not all  (4% of MRSS) 
 
 - since vertical shift not quite orthogonal to PC1 direction 
 
 - no guarantee that PCA finds “right” directions 
 
 - only “orthogonal directions of greatest variability” 
 
 - recall vertical shift was PC1 above (less “important” now) 

 
 



PCA for curves (cont.) 
 
 
PCA for 2 Clusters Data (cont.):  Graphic 
 
 
PC3:    Tilt    (2% of MRSS) 
 
 - this was PC2 before 
 
 - feature of population that is not visually apparent 
 
 
Remaining PCs:    negligible, just Gaussian noise 
 



PCA for curves (cont.) 
 
 
Potential Problem:    
 

PCA directions different from “interesting directions” 
 
 
Generally:  a very challenging problem for future work 
 
 
A first simple solution:    VARIMAX  from Section 6.3.3 of 

Ramsey and Silverman (1997) 
 
 
(a good topic for student presentation) 
 
 


