ORIE 779: Functional Data Analysis

From last meeting

Functional Data Analysis: what is the "atom"?

Important duality:
Object Space
$\leftrightarrow \quad$ Feature Space

Powerful method: Principal Component Analysis
Built Ideas in 2d (where can see everything)

PCA, Point Cloud View

[Spinning point Cloud] - [Axis of greatest variability]

- "directions of greatest variability"
- "natural coordinate axes"
- "maximal 1-d descriptions of data"

Red is $1^{\text {st }} \mathrm{PC}$ (dominant direction)
is $2^{\text {nd }} \mathrm{PC}$ (dominant direction in subspace ortho'l to $1^{\text {st }}$)
Cyan is $3^{\text {rd }} \mathrm{PC}$ (dominant direction in ortho'l to $1^{\text {stt }} \mathrm{two}$)

PCA, Curve View

Corresponding to above data: graphic

Top Row: Mean shift (as before)
$2^{\text {nd }}$ Row: Decomposition in $1^{\text {st }} \mathrm{PC}$ direction
$3^{\text {rd }}$ Row: Decomposition in $2^{\text {nd }} \mathrm{PC}$ direction
$4^{\text {th }}$ Row: Decomposition in $3^{\text {rd }}$ PC direction

PCA for curves, 3d

E.g. 1: "Dog Legs" (simulated example)[curve view]

Guess "structure of population"?

- Mean like "v"?
- x_{1} correlated with x_{3} ?
- Intuitive content of dominant direction?

Since $d=3, \quad$ try spinning point cloud view

- Can see "one direction will explain a lot of the data"?
- But "meaning in curve space"??? (x_{1} correlated with x_{3} ?)

PCA for curves, 3-d

PCA for Dog Legs: Curve View PCA

Mean: "somewhat tilted V" ($\sim 40 \%$ of SS)

PC1: "multiples of symmetric V" ($\sim 92 \%$ of MRSS)

- shows " x_{1} correlated with x_{3} " is a very important aspect

PCA for curves, 3-d (cont.)

PCA for Dog Legs (cont.): Curve View PCA

PC2: "change only in x_{2} direction" ($\sim 7 \%$ of MRSS)

PC3: "slants" (note: ortho to PC1 direction) (1\% of MRSS)

Remaining Residuals: nothing, since in only 3-d

Note: overall intuitively \& useful "decomposition of variation"

PCA for curves, 3-d (cont.)

A different 3-d example: Fans curve data graphic

Again guess "population structure"?

- Mean is slanted line?
- x_{3} has most variation?
- x_{2} is correlated with x_{3} ?

Again, since $d=3, \quad$ try spinning point cloud view

- data lie near "slab" (vs. "line" in Dog Legs e.g. above)

PCA for curves, 3-d (cont.)

PCA for Fans: Curve View PCA
Mean: Slanted Line (65\% of SS)
PC1: Driven by x_{3} variation, with x_{2} correlated (86% of MRSS)
PC2: Part of x_{2}, that is independent of $x_{3}(13 \%$ of MRSS)
PC3: all x_{1} variation, much smaller (1% of MRSS)

Verify in Spinning Point Cloud View and PC axes view
Note: "data lie in slab" reflected by large PC2 (than for dog legs)

PCA for curves

Now try higher dimension

- no more spinning clouds
- can only use curve view (but now know main ideas)

Toy Example "Random Parabolas": Raw data graphic
$\mathrm{n}=50$ curves in $\mathrm{d}=10$ dimensions, guess structure?

PCA for curves (cont.)

PCA for Parabolas: Curve View PCA
Mean: Captures all of the parabolic structure (90% of SS)

- dominant shape is not part of variation

PC1: Vertical shift (88% of MRSS)

- Can see that in raw data
- How about structure in PC 1 residuals?

PC2: Tilt (10\% of MRSS)

- can't see this in raw data

PCA for curves (cont.)

PCA for Parabolas (cont.): Curve View PCA

Remaining PCs:

- very small fraction of MRSS (see upper right Power plot)
- random directions?
- were simulated as I.I.D. Gaussians

Overall: Intuitive decomposition of "population structure"

- shows features invisible in full data set.

PCA for curves (cont.)

Interesting question: what is PCA for I.I.D. Gaussians?

Initial idea: $\quad N(0, I)$ random vectors have
"spherically symmetric distribution"

So expect:

- random directions
- SS's evenly separated

PCA for curves (cont.)

Actual answers:

1. Directions are random
2. But SS's depend on sample size

Case 1: Small n : $\mathrm{d}=10, \mathrm{n}=10 \quad$ PCA Curve Graphic

- SS's are not constant, instead "fall off linearly"
- Clearly visible in Power Plot (upper right)
- Because data naturally "extend more in some directions"

PCA for curves (cont.)

Case 2: Large $\mathrm{n}: \mathrm{d}=10, \mathrm{n}=200$ PCA Curve Graphic

- now SS's look much more constant
- but still some small decrease
- reason is more data \Rightarrow more "large directions"

There is some mathematical theory for this:

Johnstone (2001) On the distribution of the largest principal component, Annals of Statistics, 29, 291-327, internet available at: http://www-stat.stanford.edu/~imj/Reports/2000/largepc.ps

PCA for curves (cont.)

One more toy data set: "2 Clusters" Raw Data Graphic
Goal: illustrate use of "smoothed histograms" (on right)

Form of data: 2 "clusters"

- widely separated subpopulations

Guess PCA?

- "Maximal variability" along "skewer between 2 meatballs"?

PCA for curves (cont.)

PCA for 2 Clusters Data: Graphic

Mean: negligible (only 2% of SS)

PC1: Clearly captures 2 clusters (93% of MRSS)

- visible in projection plot (far left)
- and also in jitter plot \& smooth histo. (bimodal pop'n)

PCA for curves (cont.)

PCA for 2 Clusters Data (cont.): Graphic

PC2: part of vertical shift, but not all (4\% of MRSS)

- since vertical shift not quite orthogonal to PC1 direction
- no guarantee that PCA finds "right" directions
- only "orthogonal directions of greatest variability"
- recall vertical shift was PC1 above (less "important" now)

PCA for curves (cont.)

PCA for 2 Clusters Data (cont.): Graphic

PC3: Tilt (2\% of MRSS)

- this was PC2 before
- feature of population that is not visually apparent

Remaining PCs: negligible, just Gaussian noise

PCA for curves (cont.)

Potential Problem:
PCA directions different from "interesting directions"

Generally: a very challenging problem for future work

A first simple solution: VARIMAX from Section 6.3.3 of Ramsey and Silverman (1997)
(a good topic for student presentation)

