ORIE 779: Functional Data Analysis

From last meeting

Functional Data Analysis: what is the "atom"?

Important duality:

Object Space \leftrightarrow Feature Space

Powerful method: Principal Component Analysis

Built Ideas in 2d (where can see everything)

PCA, Point Cloud View

[Spinning point Cloud] - [Axis of greatest variability]

- "directions of greatest variability"
- "natural coordinate axes"
- "maximal 1-d descriptions of data"

Red is 1st PC (dominant direction)

Yellow is 2nd PC (dominant direction in subspace ortho'l to 1st)

Cyan is 3rd PC (dominant direction in ortho'l to 1sttwo)

PCA, Curve View

Corresponding to above data: graphic

Top Row: Mean shift (as before)

2nd Row: Decomposition in 1st PC direction

3rd Row: Decomposition in 2nd PC direction

4th Row: Decomposition in 3rd PC direction

E.g. 1: "Dog Legs" (simulated example) [curve view]

Guess "structure of population"?

- Mean like "v"?
- x_1 correlated with x_3 ?
- Intuitive content of dominant direction?

Since d = 3, try <u>spinning point cloud view</u>

- Can see "one direction will explain a lot of the data"?
- But "meaning in curve space"??? $(x_1 \text{ correlated with } x_3?)$

PCA for curves, 3-d

PCA for Dog Legs: <u>Curve View PCA</u>

Mean: "somewhat tilted V" (~40% of SS)

PC1: "multiples of symmetric V" (~92% of MRSS)

- shows " x_1 correlated with x_3 " is a very important aspect

PCA for curves, 3-d (cont.)

PCA for Dog Legs (cont.): Curve View PCA

- PC2: "change *only* in x_2 direction" (~7% of MRSS)
- PC3: "slants" (note: ortho to PC1 direction) (1% of MRSS)

Remaining Residuals: nothing, since in only 3-d

Note: overall intuitively & useful "decomposition of variation"

PCA for curves, 3-d (cont.)

A different 3-d example: Fans <u>curve data graphic</u>

Again guess "population structure"?

- Mean is slanted line?
- x_3 has most variation?
- x_2 is correlated with x_3 ?

Again, since d = 3, try <u>spinning point cloud view</u>

- data lie near "slab" (vs. "line" in Dog Legs e.g. above)

PCA for curves, 3-d (cont.)

PCA for Fans: Curve View PCA

- Mean: Slanted Line (65% of SS)
- PC1: Driven by x_3 variation, with x_2 correlated (86% of MRSS)
- PC2: Part of x_2 , that is independent of x_3 (13% of MRSS)
- PC3: all x_1 variation, much smaller (1% of MRSS)

Verify in <u>Spinning Point Cloud View</u> and <u>PC axes view</u>

Note: "data lie in slab" reflected by large PC2 (than for dog legs)

PCA for curves

Now try higher dimension

- no more spinning clouds
- can only use curve view (but now know main ideas)

Toy Example "Random Parabolas": Raw data graphic

n = 50 curves in d = 10 dimensions, guess structure?

PCA for Parabolas: <u>Curve View PCA</u>

Mean: Captures *all* of the parabolic structure (90% of SS)

- dominant shape is *not* part of variation
- PC1: Vertical shift (88% of MRSS)
 - Can see that in raw data
 - How about structure in PC1 residuals?
- PC2: Tilt (10% of MRSS)
 - *can't* see this in raw data

PCA for Parabolas (cont.): <u>Curve View PCA</u>

Remaining PCs:

- very small fraction of MRSS (see upper right Power plot)
- random directions?
- were simulated as I.I.D. Gaussians

Overall: Intuitive decomposition of "population structure"

- shows features invisible in full data set.

Interesting question: what is PCA for I.I.D. Gaussians?

Initial idea: N(0, I) random vectors have

"spherically symmetric distribution"

So expect:

- random directions
- SS's evenly separated

Actual answers:

- 1. Directions are random
- 2. But SS's depend on sample size
- Case 1: Small n: d = 10, n = 10 <u>PCA Curve Graphic</u>
 - SS's are not constant, instead "fall off linearly"
 - Clearly visible in Power Plot (upper right)
 - Because data naturally "extend more in some directions"

Case 2: Large n: d = 10, n = 200 <u>PCA Curve Graphic</u>

- now SS's look much more constant
- but still some small decrease
- reason is more data \Rightarrow more "large directions"

There is some mathematical theory for this:

Johnstone (2001) On the distribution of the largest principal component, *Annals of Statistics*, 29, 291-327, internet available at: http://www-stat.stanford.edu/~imj/Reports/2000/largepc.ps

One more toy data set: "2 Clusters" Raw Data Graphic

Goal: illustrate use of "smoothed histograms" (on right)

Form of data: 2 "clusters"

- widely separated subpopulations

Guess PCA?

- "Maximal variability" along "skewer between 2 meatballs"?

PCA for 2 Clusters Data: Graphic

Mean: negligible (only 2% of SS)

PC1: Clearly captures 2 clusters (93% of MRSS)

- visible in projection plot (far left)
- and also in jitter plot & smooth histo. (bimodal pop'n)

PCA for 2 Clusters Data (cont.): Graphic

PC2: part of vertical shift, but not all (4% of MRSS)

- since vertical shift *not quite* orthogonal to PC1 direction
- no guarantee that PCA finds "right" directions
- only "orthogonal directions of greatest variability"
- recall vertical shift was PC1 above (less "important" now)

PCA for 2 Clusters Data (cont.): Graphic

- PC3: Tilt (2% of MRSS)
 - this was PC2 before
 - feature of population that is not visually apparent

Remaining PCs: negligible, just Gaussian noise

Potential Problem:

PCA directions different from "interesting directions"

Generally: a very challenging problem for future work

A first simple solution: VARIMAX from Section 6.3.3 of Ramsey and Silverman (1997)

(a good topic for student presentation)