ORIE 779: Functional Data Analysis

From last meeting
Functional Data Analysis: what is the “atom™?

Important duality:

Object Space o Feature Space

Powerful method: Principal Component Analysis

Built Ideas in 2d (where can see everything)



PCA, Point Cloud View

[Spinning point Cloud] - | [Axis of greatest variability]

- “directions of greatest variability”
- “natural coordinate axes”

- “maximal 1-d descriptions of data”

Red is 1% PC (dominant direction)
is 2" PC (dominant direction in subspace ortho’l to 1%

is 3" PC (dominant direction in ortho'l to 1%two)



PCA, Curve View

Corresponding to above data: | graphic

Top Row: Mean shift (as before)
2" Row: Decomposition in 1% PC direction
3 Row: Decomposition in 2" PC direction

4" Row: Decomposition in 3" PC direction



PCA for curves, 3d

E.g. 1: “Dog Legs” (simulated example) [curve view]

Guess “structure of population”?

-  Mean like “v'?
- X, correlated with x,?
- Intuitive content of dominant direction?

Since d =3, try spinning point cloud view

- Can see “one direction will explain a lot of the data™?
- But “meaning in curve space”??? (X, correlated with X,?)



PCA for curves, 3-d

PCA for Dog Legs: | Curve View PCA

Mean: “somewhat tilted V' (~40% of SS)

PC1: “multiples of symmetric V' (~92% of MRSS)

- shows “x; correlated with X,” is a very important aspect



PCA for curves, 3-d (cont.)

PCA for Dog Legs (cont.): | Curve View PCA

PC2: *“change only in x, direction” (~7% of MRSS)

PC3: “slants” (note: ortho to PC1 direction) (1% of MRSYS)

Remaining Residuals:  nothing, since in only 3-d

Note: overall intuitively & useful “decomposition of variation”



PCA for curves, 3-d (cont.)

A different 3-d example: Fans | curve data graphic

Again guess “population structure™?

- Mean is slanted line?
- X, has most variation?

- X, Is correlated with X,?

Again, since d =3, try spinning point cloud view

- data lie near “slab” (vs. “line” in Dog Legs e.g. above)



PCA for curves, 3-d (cont.)

PCA for Fans: | Curve View PCA

Mean: Slanted Line (65% of SS)

PC1: Driven by x, variation, with x, correlated (86% of MRSS)

PC2: Part of x,, that is independent of x, (13% of MRSS)

PC3: all x, variation, much smaller (1% of MRSS)

Verify in Spinning Point Cloud View and

PC axes view

Note: "data lie in slab” reflected by large PC2 (than for dog legs)



PCA for curves

Now try higher dimension
- no more spinning clouds

- can only use curve view (but now know main ideas)

Toy Example “Random Parabolas”: | Raw data graphic

n =50 curvesin d =10 dimensions, guess structure?



PCA for curves (cont.)

PCA for Parabolas: | Curve View PCA

Mean: Captures all of the parabolic structure (90% of SS)
- dominant shape is not part of variation

PC1l: Vertical shift (88% of MRSS)
- Can see that in raw data
- How about structure in PC1 residuals?

PC2: Tilt (10% of MRSS)

- can’t see this in raw data



PCA for curves (cont.)

PCA for Parabolas (cont.): | Curve View PCA

Remaining PCs:
- very small fraction of MRSS (see upper right Power plot)
- random directions?

- were simulated as I.1.D. Gaussians

Overall: Intuitive decomposition of “population structure”

- shows features invisible in full data set.



PCA for curves (cont.)

Interesting question: what is PCA for I.1.D. Gaussians?

Initial idea: N(0,1) random vectors have

“spherically symmetric distribution”

SO0 expect:
- random directions

- SS’s evenly separated



PCA for curves (cont.)

Actual answers:
1. Directions are random

2. But SS’s depend on sample size

Case 1: Small n: d=10, n=10 | PCA Curve Graphic

- SS’s are not constant, instead “fall off linearly”
- Clearly visible in Power Plot (upper right)

- Because data naturally “extend more in some directions”



PCA for curves (cont.)

Case 2. Largen: d=10, n=200 | PCA Curve Graphic

- now SS’s look much more constant
- but still some small decrease
- reason is more data = more “large directions”
There is some mathematical theory for this:
Johnstone (2001) On the distribution of the largest principal
component, Annals of Statistics, 29, 291-327, internet

available at:
http://www-stat.stanford.edu/~imj/Reports/2000/largepc.ps



PCA for curves (cont.)

One more toy data set. “2 Clusters” | Raw Data Graphic

Goal: illustrate use of “smoothed histograms” (on right)

Form of data: 2 “clusters”

- widely separated subpopulations

Guess PCA?

- “Maximal variability” along “skewer between 2 meatballs™?



PCA for curves (cont.)

PCA for 2 Clusters Data:] Graphic

Mean: negligible (only 2% of SS)

PC1l. Clearly captures 2 clusters (93% of MRSS)
- visible in projection plot (far left)

- and also In jitter plot & smooth histo. (bimodal pop’n)



PCA for curves (cont.)

PCA for 2 Clusters Data (cont.); Graphic

PC2: part of vertical shift, but not all (4% of MRSS)
- since vertical shift not quite orthogonal to PC1 direction
- no guarantee that PCA finds “right” directions
- only “orthogonal directions of greatest variability”

- recall vertical shift was PC1 above (less “important” now)



PCA for curves (cont.)

PCA for 2 Clusters Data (cont.); Graphic

PC3: Tilt (2% of MRSS)
- this was PC2 before

- feature of population that is not visually apparent

Remaining PCs: negligible, just Gaussian noise



PCA for curves (cont.)

Potential Problem:

PCA directions different from “interesting directions”

Generally: a very challenging problem for future work

A first simple solution: VARIMAX from Section 6.3.3 of
Ramsey and Silverman (1997)

(a good topic for student presentation)



