ORIE 779: Functional Data Analysis

From last meeting

Class Web Page:
http://www.stat.unc.edu/faculty/marron/321FDAhome.html

Functional Data Analysis: what is the “atom”?

Goal I: Understanding “population structure”.



From last meeting (cont.)

Important duality:

Object Space o Feature Space

Powerful method: Principal Component Analysis

Recall many names:

Statistics: Principal Component Analysis (PCA)

Social Sciences: Factor Analysis (PCA is a subset)
Probability / Electrical Eng: Karhunen — Loeve expansion
Applied Mathematics: Proper Orthog’l Decomposition (POD)
Geo-Sciences: Empirical Orthogonal Functions (EOF)



From last meeting (cont.)

Recall many applications / viewpoints:

dimension reduction (statistics / data mining)
change of basis (linear algebra)

transformation (statistics)

data compression (electrical engineering)
signal denoising (acoustics / image processing)

optimization (operations research)



PCA, Optimization View

Goal: find “direction of greatest variability”

[Spinning point Clouc

]

[Axis of greatest variability]

Visual Aside: Motion helps “understand” 3-d data in 2-d

environment

Question: “direction” from where?



PCA, Optimization View (cont.)

Step 1. Start with Center Point:
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Aside: “mean vector” = “vector of means” is not obvious

Notation: “under-arrow” used for vectors



Step 2:

Step 3:

Step 4.

Step 5:

Step 6:

PCA, Optimization View (cont.)

Work with re-centered data:

X, —X, i=1..,n, the “mean residuals”
Consider all possible “directions”
Project (find closest point) data onto direction vector

Maximize “spread” (sample variance), over direction

Project data onto orthogonal subspace, and repeat.



PCA, 2-d lllustration

Reasons:
- easy to see everything in 2-d

- build ideas that generalize to higher dimensions

Raw Toy Data:| Graphic Shifted, slanted Gaussian point cloud

Recall two views:
- “Point Cloud” (scatterplot in 2-d)
- ‘“curves” (corresponding parallel coordinate plot)

- useful one to one correspondence



PCA, 2-d lllustration (cont.)

Steps 1 & 2: Recenter by sample mean

Graphic {1: Find the

- Looks like “the center”

- In curve view shows “average of components”

Graphic 2: Find vectors from to data

- called “mean residuals”



PCA, 2-d lllustration (cont.)

Graphic 3: Subtract the mean, i.e. “shift to the origin”

- Now “direction” makes more sense
- Note change of axis in curve view

- Now have * zero” in both views



PCA, 2-d lllustration (cont.)

Interesting numerical comparison:

Quantify “how much shifting is done”, using sums of squares

Terminology: Analysis of Variance (ANOVA)
- Decomposition of Sums of Squares

- main substance of ANOVA

- not hypothesis testing (as many think)
- Contains useful insights

- Interpret as “energy” or “signal power”



PCA, 2-d lllustration (cont.)

Graphic 4: Overlay sums of squares

Total Sum of Squares = 662
- Squared lengths of black line segments

- =~ 606

Fractionis = 92%

Terminology: “mean contains 92% of energy in signal”



PCA, 2-d lllustration (cont.)
ANOVA (cont.)
- Residual (from mean) Sum of Squares = 55
- Squared length of mean residuals
- Fractionis = 8%

- “Mean Residuals contain 8% of total energy”

Aside: Nonzero means are often a large fraction of total
variation. Thus conventional “R-squared Analysis” is defined
with the mean subtracted everywhere.



PCA, 2-d lllustration (cont.)

Important point: this analysis “makes sense”

because of “Pythagorean Theorem?”:

n d
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Power of L* (“Hilbert Space”)



PCA, 2-d lllustration (cont.)

Pythagorean Theorem?  Where is the triangle?

/)_(1\
- Put data in “space of concatenated vectors” | :
\)—(n/ndxl
- Mean is projection onto subspace
{2(. K T = K Kgg T = Xn,d}

S0 mean residuals are orthogonal

Triangle (in this big space) has vertices:
- the origin
- the big data vector
- the big mean vector



PCA, 2-d lllustration (cont.)

Steps 3 & 4:  Find “direction of greatest variability”

Graphic b: Direction vector

- determines 1-d subspace

- l.e. line through origin

Graphic 6: Projections onto Direction vector

- Projection is nearest point in 1-d subspace



PCA, 2-d lllustration (cont.)

Step 5:  Optimize direction for “greatest variability of project'ns”

Graphic b: (answer was already shown above)

major axis of “ellipse of data”

- most efficient 1-d representation of data

- minimizes length of

- least squares solution to “line closest to data”

- Note “fairly close” in corresponding curve view



PCA, 2-d lllustration (cont.)

How “close™? Use ANOVA to quantify:

Graphic

/: Pieces of ANOVA

- Sum of Squares of recentered data = 55

Sum of squared lengths of blue segments

Represents “energy of recentered data”



PCA, 2-d lllustration (cont.)

- Sum of Squares of Projected Data = 51
- Contains about 91% of relevant sum of squares
- Shows this 1-d representation is a “good approx’tion”

- This comparison is more useful than to total SS

, = 4
- Has only 7% of energy in recentered data

- i.e. "little left over after 1-d approximation”



PCA, 2-d lllustration (cont.)

Alternate view:  Orthogonal to direction of greatest variability

Graphic

o¥

Graphic

D:

Current Residuals are previous Projections

- Current are previous

- |In 2-d this direction minimizes the variation

- Because of another Pythagorean Theorem

- Driven by orthogonality of directions



PCA, 2-d lllustration (cont.)

Effects of “poor 1-d representation” on Curve View:

much worse approximation of data

describes less of the structure in the data

but contains some useful information

“orthogonal direction” looks flat instead of slanted

Note ANOVA analysis uses same numbers

Graphic 10 but they “swap places” (in expected way)




PCA, 2-d lllustration (cont.)

Drawback to this type of visualization:

Useless for higher dimensions

Did this to build ideas, now extend insight to high dimensions

First revisit previous example, using only Curve View,

but summarize different views in single:

Curve View Graphic




PCA, 2-d lllustration (cont.)

Curve View Graphi

c. Approach to viewing PCA

Upper far left: Raw Data

- Colors allowing
- Curves are just

Upper center left:

Upper center right:

easy indentification across panels
line segments since only 2-d

Mean Vector

Mean Residuals

- this is difference of previous 2



PCA, 2-d lllustration (cont.)

Curve View Graphic (cont.)

Upper far right. Power plot

- Shows Fraction of Sum of Squares, in each direction
- Fractions shown in blue

- Cumulative Fractions shown in red

- Will make more sense for higher dimensions

Next Rows: Two directional projections

Middle Row: projection in dominant direction



PCA, 2-d lllustration (cont.)

Curve View Graphic (cont.)

Middle Row: projection in dominant direction (cont.)

Middle far left: all Projections represented as curves

- contains “a large amount of simple structure in data”

- “good one dimensional representation” (as noted before)
- Note: mean is not in this view

Middle center left: View as “mean +- extreme projections”
- Sometimes this view is more useful

- l.e. additional insight comes from including the mean

- Fraction of sum of squares appears here



PCA, 2-d lllustration (cont.)

Curve View Graphic (cont.)

Middle Row: projection in dominant direction (cont.)

Middle center right: from mean
- Family of curves above, minus far left

- orthogonal to far left

- this Fraction of SS also shown

Middle far right: projection coefficients (numbers)
each dot is on coefficient
- color is linked to data curves
- random height (“jitter plot”) allows visual separation
- curve is “smooth histogram” (discussed more later)
- these look “quite Gaussian” (OK, since simulated that way)
- usefulness illustrated later



PCA, 2-d lllustration (cont.)

Curve View Graphic (cont.)

Bottom Row: (cont.)

Bottom far left:

- same as residuals (since only in 2-d)
Bottom center left: View as “mean +- extreme "’
- Different impression from this orthogonal direction

Bottom center right: Remaining residuals

- Have subtracted only from residuals above
- Nothing left, since in 2-d

- Sum of Squares is 0, since “nothing left”

Bottom far right:  projection coefficients (numbers)
- Again Gaussian (as expected)



PCA, 2-d lllustration (cont.)

Now try variations, to study differences:

Similar simulation, but with mean O:

Raw

Data | Curve View Graphic

-  Raw data look like

D mean recentere

d from before

- Mean (upper center left) looks visually negligible
- Confirmed by very small SS (non-zero, since sim’d data)
- Directions (and ANOVA) all very similar to before



PCA, 2-d lllustration (cont.)

Simulated from spherical Gaussian

Raw Dat:

A

Curve View Graphi

C

- Neither Raw Data view shows much structure

- Directions not informative

- Just driven by luck of the draw
- Note Sums of Squares much more evenly split
- But somewhat different. again luck of the draw
- Power Plot (upper far right) shows this nicely



