
 
ORIE 779:    Functional Data Analysis 

 
From last meeting 

 
 
Class Web Page: 
http://www.stat.unc.edu/faculty/marron/321FDAhome.html 
 
 
Functional Data Analysis: what is the “atom”? 
 
 
Goal I:  Understanding “population structure”.  
 

 



From last meeting (cont.) 
 
 
Important duality: 
 

Object Space   ↔    Feature Space 
 
 
Powerful method:  Principal Component Analysis 
 
 
Recall many names: 
 
Statistics:    Principal Component Analysis  (PCA) 
Social Sciences:    Factor Analysis (PCA is a subset) 
Probability / Electrical Eng:    Karhunen – Loeve expansion 
Applied Mathematics:    Proper Orthog’l Decomposition (POD) 
Geo-Sciences:    Empirical Orthogonal Functions (EOF) 
 



From last meeting (cont.) 
 
 
Recall many applications / viewpoints: 
 
- dimension reduction (statistics / data mining) 
 
- change of basis (linear algebra) 
 
- transformation (statistics) 
 
- data compression (electrical engineering) 
 
- signal denoising (acoustics / image processing) 
 
- optimization (operations research) 
 
 



PCA, Optimization View 
 
 
Goal:  find “direction of greatest variability” 
 
 [Spinning point Cloud]    -     [Axis of greatest variability] 
 
 
Visual Aside:  Motion helps “understand” 3-d data in 2-d 
environment 
 
 
Question:  “direction” from where? 
 
 
 
 



PCA, Optimization View (cont.) 
 
 
 
Step 1:  Start with Center Point:   
 

Sample Mean:  
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Aside:   “mean vector”  =  “vector of means”   is not obvious 
 
 
Notation:   “under-arrow” used for vectors 



PCA, Optimization View (cont.) 
 
 
Step 2: Work with re-centered data: 
 

xxi − ,    ni ,...,1=  ,          the “mean residuals” 
 
 
Step 3: Consider all possible “directions” 
 
 
Step 4: Project (find closest point) data onto direction vector 
 
 
Step 5: Maximize “spread” (sample variance), over direction 
 
 
Step 6: Project data onto orthogonal subspace, and repeat. 



PCA, 2-d Illustration 
 
 
Reasons: 
 
- easy to see everything in 2-d 
 
- build ideas that generalize to higher dimensions 
 
 
Raw Toy Data:  Graphic    Shifted, slanted Gaussian point cloud 
 
 
Recall two views: 
 
- “Point Cloud”  (scatterplot in 2-d) 
 
- “curves”   (corresponding parallel coordinate plot) 
 
- useful one to one correspondence 
 



PCA, 2-d Illustration  (cont.) 
 
 
 
Steps 1 & 2:  Recenter by sample mean 
 
Graphic 1:  Find the mean 
 
- Looks like “the center” 
 
- Mean in curve view shows “average of components” 
 
 
 
Graphic 2:  Find vectors from mean to data 
 
- called “mean residuals” 
 



PCA, 2-d Illustration  (cont.) 
 
 
 
Graphic 3:  Subtract the mean, i.e. “shift mean to the origin” 
 
- Now “direction” makes more sense 
 
- Note change of axis in curve view 
 
- Now have “mean zero” in both views 
 
 



PCA, 2-d Illustration  (cont.) 
 
 
Interesting numerical comparison: 
 
 Quantify “how much shifting is done”, using sums of squares 
 
 
Terminology:   Analysis of Variance  (ANOVA) 
 
- Decomposition of Sums of Squares 

 
- main substance of ANOVA 
 
- not hypothesis testing (as many think) 
 

- Contains useful insights 
 
- Interpret as “energy” or “signal power” 



PCA, 2-d Illustration  (cont.) 
 
 
Graphic 4:    Overlay sums of squares 
 
- Total Sum of Squares  ≈  662 

 
- Squared lengths of black line segments 
 

- Sum of Squares for Mean  ≈  606 
 
- Squared length of green (times n) 
 
- Fraction is  ≈  92% 
 
- Terminology:  “mean contains 92% of energy in signal” 
 



PCA, 2-d Illustration  (cont.) 
 
ANOVA  (cont.) 
 
- Residual (from mean) Sum of Squares  ≈  55 

 
- Squared length of mean residuals 
 
- Fraction is  ≈  8% 
 
- “Mean Residuals contain 8% of total energy” 

 
 
 
Aside:    Nonzero means are often a large fraction of total 

variation.  Thus conventional “R-squared Analysis” is defined 
with the mean subtracted everywhere. 

 



PCA, 2-d Illustration  (cont.) 
 
 
Important point:  this analysis “makes sense”  
 
because of “Pythagorean Theorem”: 
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Power of  2L    (“Hilbert Space”) 



PCA, 2-d Illustration  (cont.) 
 
 
Pythagorean Theorem?     Where is the triangle? 
 

- Put data in “space of concatenated vectors’’  
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- Mean is projection onto subspace   
{ }dndn xxxxx ,,11,1,1 ,...,: ==== ��  

 
- So mean residuals are orthogonal 
 
- Triangle (in this big space) has vertices: 

- the origin 
- the big data vector 
- the big mean vector 



PCA, 2-d Illustration  (cont.) 
 
 
Steps 3 & 4:    Find “direction of greatest variability” 
 
 
Graphic 5:  Direction vector 
 
- determines 1-d subspace 
 
- i.e. line through origin 
 
 
Graphic 6:  Projections onto Direction vector 
 
- Projection is nearest point in 1-d subspace 
 



PCA, 2-d Illustration  (cont.) 
 
 
Step 5:    Optimize direction for “greatest variability of project’ns” 
 
 
Graphic 6:  (answer was already shown above) 
 
- major axis of “ellipse of data” 
 
- most efficient 1-d representation of data 
 
- minimizes length of residuals 
 
- least squares solution to “line closest to data” 
 
- Note “fairly close” in corresponding curve view 
 



PCA, 2-d Illustration  (cont.) 
 
 
How “close”?                 Use ANOVA to quantify: 
 
 
Graphic 7:  Pieces of ANOVA 
 
- Sum of Squares of recentered data  ≈  55 
 

- Sum of squared lengths of blue segments 
 
- Represents “energy of recentered data” 



PCA, 2-d Illustration  (cont.) 
 
 
- Sum of Squares of Projected Data  ≈  51 
 

- Contains about 91% of relevant sum of squares 
 

- Shows this 1-d representation is a “good approx’tion” 
 
- This comparison is more useful than to total SS 

 
 
- Sum of Squares of Resdiuals  ≈  4 
 

- Has only 7% of energy in recentered data 
 
- i.e. “little left over after 1-d approximation” 



PCA, 2-d Illustration  (cont.) 
 
 
Alternate view:     Orthogonal to direction of greatest variability 
 
Graphic 8:    Direction vector 
 
Graphic 9:    Corresponding residuals 
 
- Current Residuals are previous Projections 
 
- Current Projections are previous Residuals 
 
- In 2-d this direction minimizes the variation 
 
- Because of another Pythagorean Theorem 
 
- Driven by orthogonality of directions 



PCA, 2-d Illustration  (cont.) 
 
 
Effects of “poor 1-d representation” on Curve View: 
 
- much worse approximation of data 
 
- describes less of the structure in the data 
 
- but contains some useful information 
 
-  “orthogonal direction’’ looks flat instead of slanted 
 
 
Note ANOVA analysis uses same numbers 
 
Graphic 10  but they “swap places”  (in expected way) 
 



PCA, 2-d Illustration  (cont.) 
 
 
Drawback to this type of visualization: 
 

Useless for higher dimensions 
 
 
Did this to build ideas, now extend insight to high dimensions 
 
 
 
First revisit previous example, using only Curve View,  
 
 but summarize different views in single: 
 
 
Curve View Graphic 



PCA, 2-d Illustration  (cont.) 
 
 
Curve View Graphic:  Approach to viewing PCA 
 
 
Upper far left:    Raw Data 
- Colors allowing easy indentification across panels 
- Curves are just line segments since only 2-d 
 
Upper center left:    Mean Vector 
 
Upper center right:    Mean Residuals 
- this is difference of previous 2  
 
 



PCA, 2-d Illustration  (cont.) 
 
Curve View Graphic (cont.) 
 
Upper far right:   Power plot  
- Shows Fraction of Sum of Squares, in each direction 
- Fractions shown in blue 
- Cumulative Fractions shown in red 
- Will make more sense for higher dimensions 
 
 
Next Rows:   Two directional projections 
 
Middle Row:   projection in dominant direction 
 



PCA, 2-d Illustration  (cont.) 
 
Curve View Graphic (cont.) 
 
Middle Row:   projection in dominant direction  (cont.) 
 
Middle far left:   all Projections represented as curves 
- contains “a large amount of simple structure in data” 
- “good one dimensional representation” (as noted before) 
- Note:  mean is not in this view 
 
Middle center left:    View as “mean +- extreme projections” 
- Sometimes this view is more useful 
- I.e. additional insight comes from including the mean 
- Fraction of sum of squares appears here 
 



PCA, 2-d Illustration  (cont.) 
 
Curve View Graphic (cont.) 
 
Middle Row:   projection in dominant direction  (cont.) 
 
Middle center right:    Residuals from mean 
- Family of curves above, minus far left 
- orthogonal to far left 
- this Fraction of SS also shown  
 
Middle far right:   projection coefficients (numbers) 
- each dot is on coefficient 
- color is linked to data curves 
- random height (“jitter plot”) allows visual separation 
- curve is “smooth histogram”  (discussed more later) 
- these look “quite Gaussian”  (OK, since simulated that way) 
- usefulness illustrated later 



PCA, 2-d Illustration  (cont.) 
 
Curve View Graphic (cont.) 
 
Bottom Row:   projection in orthogonal direction  (cont.) 
 
Bottom far left:    projections 
- same as residuals (since only in 2-d) 
 
Bottom center left:    View as “mean +- extreme projections” 
- Different impression from this orthogonal direction 
 
Bottom center right:    Remaining residuals 
- Have subtracted only from residuals above 
- Nothing left, since in 2-d 
- Sum of Squares is 0, since “nothing left” 
 
Bottom far right:    projection coefficients (numbers) 
- Again Gaussian  (as expected) 



PCA, 2-d Illustration  (cont.) 
 
 
Now try variations, to study differences: 
 
 
Similar simulation, but with mean 0: 
 

Raw Data     Curve View Graphic 
 
- Raw data look like mean recentered from before 
- Mean (upper center left)  looks visually negligible 
- Confirmed by very small SS  (non-zero, since sim’d data) 
- Directions (and ANOVA) all very similar to before 
 



PCA, 2-d Illustration  (cont.) 
 
 
Simulated from spherical Gaussian 
 

Raw Data     Curve View Graphic 
 
- Neither Raw Data view shows much structure 
- Directions not informative 
- Just driven by luck of the draw 
- Note Sums of Squares much more evenly split 
- But somewhat different:  again luck of the draw 
- Power Plot (upper far right) shows this nicely 
 
 
 


