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Two Worlds

World 1: “Euclidean vector space”,
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World 2: “(Hilbert) Function Space”,

{ }∫ ∞<=
1

0

22 )(:)( dxxfxfL

Connection:  via “digitization”

For equally spaced  10 1 ≤<<≤ nxx L ,

Relate   )(xf    to   
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Inner Product Structure

World 1:
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World 2:
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Consequences:

1. “distance”  =  baba −− ,

2. “angle”:   ba⊥     ⇔     0, =ba

Connection:  Riemann Summation



Linear Bases

{ },..., 21 ψψ   is a “basis” means every member
f  has a linear representation:

∑=
i iif ψθ

A basis is “orthonormal” when:
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(all orthogonal to each other, with length 1)



Orthonormal Bases

Consequences:

- Compute    ii f ψθ ,=

- in  nℜ ,   
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 is the “transform”

- transform is a “rotation” operation
(lengths and angles preserved)



Example 1:  Unit vector basis
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Notes:

- orthonormal

- for  
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,  transform has  ii y=θ

- “identity rotation”



Example 2:  Fourier Basis

Show FourierBasis.ps, with sin’s and cos’s.

World 1:   Discrete Fourier Basis

World 2:   Continuous Fourier Basis

Exactly orthonormal in both  (takes
trigonometry)

Fourier Transform:  Rotation that
“decomposes into periodicities”



Example 3:  Haar Wavelet Basis

Show HaarFullBasis.ps

“Up and Down” step functions, kj ,ψ

“doubly indexed” by:
- “scale”  j
- “location”  k

“dilation form”: ( )kxx jj
kj −= −− 22)( 2/

, ψψ

Exactly orthonormal in both worlds

Dyadic structure, very similar to cascades

Histogram View:  successive differences
Show HaarHisto.ps



Example 4:  Smoother Wavelet Bases

Daubechies 4:  Continuous but “rough”

Show Daub4Basis.ps

Symmlet 8:  much smoother, still “local”

Show Symm8Basis.ps



Application 1:  Signal Compression

Idea:  represent  y   by transform  θ ,  and
hope that “many  0≈iθ ”

- “lossless compression”,  want  0=iθ

- “approximate compression”,  replace
θ by 0 when “close”

Main Concept:

“Good Compression”   ⇔    more 0≈iθ



Quality of approximation:

Measure by “Energy” in signal:
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- lossless compression:   θEEy =
(Parseval Identity)

- Good approximation:   θEEy ≈

- Bad approximation: θEEy >>



Approximation Folklore:

Unit vectors:  terrible for interesting signals

Fourier basis:  good for smooth and periodic

Wavelet bases:  allow some jumps

∃ many variations, and ways of “cooking up
good bases”

Show ExactRiskEGs.ps and CompressionEG.ps



Application 2:  Denoising

Goal:  from “data”    nsy +=

try to recover “signal”  s

from “noise”  n,  (e.g. i.i.d. mean 0)

Transform approach:

- find “rotation” with “good
compression of signal”

- zero out small   iθ

- invert transform



Denoising Examples

Show WaveDNFourier.eps, StepDNFourier.eps and WaveStepDNHaar.eps

Wave Target:

- Fourier basis:  Excellent

- Haar basis:  Poor

Step Target:

- Fourier basis:  Terrible

- Haar basis:  Excellent

Note:  driven by signal compression



Fast Computation

of transform:   iii y ψθ ,= ,    ni ,...,1=

1. Naïve implementation:   )( 2nO   matrix
multiplication

2. Fast Fourier Transform:   )log( nnO
using trigonometric properties

3. Fast wavelet Transform:   )(nO   using
simple “pyramid algorithm”



Haar Pyramid Algorithm, I

Notation:    
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“mothers”:    
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Show HaarFullBasis.ps again



Haar Pyramid Algorithm, II

“fathers”:    
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Show HaarFathers.ps

Note:  father vectors are also a basis (but not
orthonormal)

Can mix and match mothers and fathers

Show HaarPartBasis.ps



Haar Pyramid Algorithm, III

Relations across scales:

1. Magnification (dilation):

1+jϕ   is “half width” of  jϕ

1+jψ   is “halfwidth” of jψ

2. Father    →    Mother, Father

( )kjkjkj 2,!12,!, 2
1

+++ −= ϕϕψ

( )kjkjkj 2,!12,!, 2
1

+++ += ϕϕϕ



Haar Pyramid Algorithm, IV

Apply inner product to get:

( )kjkjkj ff 2,112,1, 2
1

+++ −=θ

( )kjkjkj fff 2,112,1, 2
1

+++ +=

where

yf kjkj ,,, ϕ=

Start with    kkn yf =),(log 2
,   and iterate up

through scales,   to get  )(nO   algorithm



Haar Pyramid Algorithm, V

Overall Structure:
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Haar Pyramid Algorithm, VI

Notes:

1. each level is “energy preserving”:
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2. “Energy of constants”  passed to  f ’s

3. “Anti-constant energy”  passed to  θ ’s

Again visit ExactRiskEGs.ps and CompressionEG.ps

4. “Energy issues” are ANOVA style
decomposition of sums of squares


