Wavelet Basics

(A Beginner's Introduction)

J. S. Marron
Department of Statistics University of North Carolina

Some references:
Marron, J. S. (1999)"Spectral view of wavelets and nonlinear regression", Bayesian Inference in Wavelet-Based Models, Müller, P. and Vidakovic, B. Eds., Lecture Notes in Statistics No. 141, Springer, New York, 19-32.

Strang, G. (1989) Wavelets and dilation equations: a brief introduction, SIAM Review, 31, 614-627.

For deeper mathematics, but concisely presented: Chps. 1 and 2 of:
Benedetto, J. J. and Frazier, M. W. (1994) Wavelets: Mathematics and Applications, CRC Press, Boca Raton, Florida.

Two Worlds

World 1: "Euclidean vector space",

$$
\mathfrak{R}^{n}=\left\{\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right): y_{1}, \ldots, y_{n} \in \mathfrak{R}\right\}
$$

World 2: "(Hilbert) Function Space",

$$
L^{2}=\left\{f(x): \int_{0}^{1} f(x)^{2} d x<\infty\right\}
$$

Connection: via "digitization"
For equally spaced $0 \leq x_{1}<\cdots<x_{n} \leq 1$,
Relate $f(x)$ to $\left(\begin{array}{c}f\left(x_{1}\right) \\ \vdots \\ f\left(x_{n}\right)\end{array}\right)$

Inner Product Structure

World 1:

$$
\langle\underline{y}, \underline{z}\rangle=\left\langle\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right),\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right)\right\rangle=\sum_{i=1}^{n} y_{i} z_{i}
$$

World 2:

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Consequences:

1. "distance" $=\sqrt{\langle a-b, a-b\rangle}$
2. "angle": $a \perp b \Leftrightarrow\langle a, b\rangle=0$

Connection: Riemann Summation

Linear Bases

$$
\begin{gathered}
\left\{\psi_{1}, \psi_{2}, \ldots\right\} \text { is a "basis" means every member } \\
f \text { has a linear representation: } \\
f=\sum_{i} \theta_{i} \psi_{i}
\end{gathered}
$$

A basis is "orthonormal" when:

$$
\left\langle\Psi_{i}, \Psi_{j}\right\rangle= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

(all orthogonal to each other, with length 1)

Orthonormal Bases

Consequences:

$$
\text { - Compute } \theta_{i}=\left\langle f, \psi_{i}\right\rangle
$$

- in $\mathfrak{R}^{n}, \underline{\theta}=\left(\begin{array}{c}\theta_{1} \\ \vdots \\ \theta_{n}\end{array}\right)$ is the "transform"
- transform is a "rotation" operation (lengths and angles preserved)

Example 1: Unit vector basis

$$
\underline{u}_{i}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1_{i} \\
0 \\
\vdots \\
0
\end{array}\right) \in \mathfrak{R}^{n}, \quad i=1, \ldots, n
$$

Notes:

- orthonormal
- for $\underline{y}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right)$, transform has $\theta_{i}=y_{i}$
- "identity rotation"

Example 2: Fourier Basis

Show FourierBasis.ps, with sin's and cos's.

World 1: Discrete Fourier Basis

World 2: Continuous Fourier Basis

Exactly orthonormal in both (takes trigonometry)

Fourier Transform: Rotation that "decomposes into periodicities"

Example 3: Haar Wavelet Basis

Show HaarFullBasis.ps
"Up and Down" step functions, $\Psi_{j, k}$
"doubly indexed" by:

- "scale" j
- "location" k
"dilation form": $\psi_{j, k}(x)=2^{-j / 2} \psi\left(2^{-j} x-k\right)$

Exactly orthonormal in both worlds

Dyadic structure, very similar to cascades

Histogram View: successive differences
Show HaarHisto.ps

Example 4: Smoother Wavelet Bases

Daubechies 4: Continuous but "rough"

Show Daub4Basis.ps

Symmlet 8: much smoother, still "local"

Show Symm8Basis.ps

Application 1: Signal Compression

Idea: represent \underline{y} by transform $\underline{\theta}$, and hope that "many $\theta_{i} \approx 0$ "
-"lossless compression", want $\theta_{i}=0$

- "approximate compression", replace θ by 0 when "close"

Main Concept:
"Good Compression" \Leftrightarrow more $\theta_{i} \approx 0$

Quality of approximation:

Measure by "Energy" in signal:

$$
E_{\underline{y}}=\sum_{i=1}^{n} y_{i}^{2} \quad \text { or } \quad E_{f}=\int_{0}^{1} f(x)^{2} d x
$$

- lossless compression: $E_{\underline{y}}=E_{\underline{\theta}}$ (Parseval Identity)
- Good approximation: $E_{\underline{y}} \approx E_{\underline{\theta}}$
- Bad approximation: $E_{\underline{y}} \gg E_{\underline{\theta}}$

Approximation Folklore:

Unit vectors: terrible for interesting signals

Fourier basis: good for smooth and periodic

Wavelet bases: allow some jumps

\exists many variations, and ways of "cooking up good bases"

Show ExactRiskEGs.ps and CompressionEG.ps

Application 2: Denoising

Goal: from "data" $\underline{y}=\underline{s}+\underline{n}$
try to recover "signal" \underline{s}
from "noise" \underline{n}, (e.g. i.i.d. mean 0)

Transform approach:

- find "rotation" with "good compression of signal"
- zero out small θ_{i}
- invert transform

Denoising Examples

Show WaveDNFourier.eps, StepDNFourier.eps and WaveStepDNHaar.eps
Wave Target:

- Fourier basis: Excellent
- Haar basis: Poor

Step Target:

- Fourier basis: Terrible
- Haar basis: Excellent

Note: driven by signal compression

Fast Computation

of transform: $\quad \theta_{i}=\left\langle y_{i}, \psi_{i}\right\rangle, \quad i=1, \ldots, n$

1. Naïve implementation: $O\left(n^{2}\right)$ matrix multiplication
2. Fast Fourier Transform: $O(n \log n)$ using trigonometric properties
3. Fast wavelet Transform: $O(n)$ using simple "pyramid algorithm"

Haar Pyramid Algorithm, I

Notation: $\quad \underline{1}(n)=\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right), \quad \underline{0}(n)=\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right)$

Show HaarFullBasis.ps again

Haar Pyramid Algorithm, II

Show HaarFathers.ps
Note: father vectors are also a basis (but not orthonormal)

Can mix and match mothers and fathers

Haar Pyramid Algorithm, III

Relations across scales:

1. Magnification (dilation):

$$
\begin{aligned}
& \varphi_{j+1} \text { is "half width" of } \varphi_{j} \\
& \psi_{j+1} \text { is "halfwidth" of } \psi_{j}
\end{aligned}
$$

2. Father \rightarrow Mother, Father

$$
\begin{aligned}
& \underline{\psi_{j, k}}=\frac{1}{\sqrt{2}}\left(\underline{\varphi_{j+!, 2 k+1}}-\underline{\varphi_{j+!, 2 k}}\right) \\
& \left.\underline{\varphi_{j, k}}=\frac{1}{\sqrt{2}} \underline{\underline{\varphi_{j+!, 2 k+1}}}+\underline{\varphi_{j+!, 2 k}}\right)
\end{aligned}
$$

Haar Pyramid Algorithm, IV

Apply inner product to get:

$$
\begin{aligned}
\theta_{j, k} & =\frac{1}{\sqrt{2}}\left(f_{j+1,2 k+1}-f_{j+1,2 k}\right) \\
f_{j, k} & =\frac{1}{\sqrt{2}}\left(f_{j+1,2 k+1}+f_{j+1,2 k}\right)
\end{aligned}
$$

where

$$
f_{j, k}=\left\langle\underline{\boldsymbol{\varphi}_{j, k}}, \underline{y}\right\rangle
$$

Start with $f_{\log _{2}(n), k}=y_{k}$, and iterate up through scales, to get $O(n)$ algorithm

Haar Pyramid Algorithm, V

Overall Structure:

Haar Pyramid Algorithm, VI

Notes:

1. each level is "energy preserving":

$$
\sum_{k=0}^{2^{j+1}-1} f_{j+1, k}^{2}=\sum_{k=0}^{2^{j}-1} f_{j, k}^{2}+\sum_{k=0}^{2^{j}-1} \theta_{j, k}^{2}
$$

2. "Energy of constants" passed to f 's
3. "Anti-constant energy" passed to θ 's

Again visit ExactRiskEGs.ps and CompressionEG.ps

4. "Energy issues" are ANOVA style decomposition of sums of squares

