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Abstract

This is an overview of some recent research, and of some open prob-
lems in the visualization of internet traffic data. One challenge comes
from the sheer scale of the data, where millions (and far more if desired)
of observations are frequently available. Another challenge comes from
ubiquitous heavy tail distributions, which render standard ideas such as
�random sampling will give a representative sample� obsolete. One more
challenge is the visual representation of (and even the deÞnition of) �com-
mon constant transfer rates� in a large scatterplot.

1 Introduction and background
The area of internet traffic measurement and modelling has a pressing need for
novel and creative visualization ideas. The issues and the data are both com-
plex, yet few researchers in that area (with some notable exceptions) are aware
of the power of visualization for addressing the problems, and understanding
complicated behavior.
The internet shares some similarities to the telephone network. Both are

gigantic, worldwide networks for the transmission of information. Both share
the notion of �connection�, generally between two points. For this reason
the Þrst models for internet traffic were based on standard queueing theory,
with assumption of Poisson arrival of connections, and exponentially distributed
times of connection duration.
A large body of exciting work during the 1990�s revealed that these assump-

tions were grossly inadequate, and far different models were usually much more
appropriate. In particular, duration distributions were seen to exhibit heavy
tails (caused by both far shorter, and also far longer connections than typi-
cally found in telephone traffic), and time series of aggregated traffic exhibit
bursty behavior and long range dependence. An elegant mathematical theory,
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demonstrating how heavy tail durations can lead to long range dependence was
developed by Mandelbrot (1969), Cox, D. R. (1984), Taqqu and Levy (1986),
Leland, Taqqu, Willinger and Wilson (1994), Crovella and Bestavros (1996),
Heath, Resnick and Samorodnitsky (1998), and Resnick and Samorodnitsky
(1999).
This theory is deep and compelling, and gives good description of observed

behavior in a wide range of circumstances. However, there has been recent
controversy at several points.
One controversial point has been the issue of the heaviness of tails. Downey

(2000) suggests that the Log Normal (not heavy tailed in the classical sense), can
Þt duration distributions as well as classical heavy tail distributions, and gave
some interesting physical motivation for this distribution as well. However,
by developing the nice idea of �tail fragility�, Gong, Liu, Misra and Towsley
(2001) showed that both types of distribution can give apparently reasonable
Þts. This general direction was further developed by Hernández-Campos, Mar-
ron, Samorodnitsky and Smith (2002), using some much larger data sets (in
the millions), together with a novel visualization for understanding the level
of sample variation. This latter work showed that a mixture of three Double
Pareto Log Normal distributions (see Reed 2001) gave an excellent Þt, and was
also physically interpretable. These results motivated the development of the
concept of �variable heavy tails�.
Another point of recent controversy has been over the issue of long range de-

pendence. This is currently widely accepted (and intuitively sensible), but some
interesting questions have been raised (using some novel visualization ideas) by
Cao, Cleveland, Lin, and Sun (2001, 2002a, b, c). The key idea is that aggre-
gated traffic, of the type typically found at major internet nodes, tends to �wash
out� long range dependence. The idea is theoretically justiÞed by appealing
to limit theorems for aggregated point processes. An example, where both
types of behavior were observed depending on scale, was studied using some
different visualizations, by Hannig, Marron and Riedi (2001). An interesting
issue to follow in the future will be the state of this balance between long range
dependence caused by relatively few large extremely large transmissions, and a
more Poisson type probability structure caused by aggregation. Cao, Cleve-
land, Lin, and Sun (2001, 2002a, b, c) predict ultimate Poisson type structure,
for the good reason that internet traffic continually increases. However, this is
based on an assumption that sizes of transmissions will stay Þxed, which seems
questionable.
Downey (2001) questioned long range dependence from a different viewpoint,

by showing that duration distributions may not be very consistent with the
deÞnition of �heavy tailed�, in the classical asymptotic sense. This was the
Þrst observation of �variable heavy tails�, as deÞned in Hernández-Campos,
Marron, Samorodnitsky and Smith (2002). That paper goes on to develop an
asymptotic theory that parallels the classical theory. In particular it is seen
that long range dependence still follows from the far broader (and realistic in
terms of the nature of the data) concept of �variable heavy tails�.
The main purpose of this paper is to point out some perhaps fun and chal-
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lenging visualization problems.
The Þrst main problem is related to the �Mice and Elephants� graphic, de-

veloped in Marron, Hernández-Campos and Smith (2002), discussed in Section
3. The problem is how to choose a �representative sample�, and it is seen that
the usual device of random sampling is clearly inappropriate.
The second main problem is motivated by an apparent �commonality of

ßow rates�, discussed in Section 3. A large scatterplot seems to reveal some
interesting visual structure, that makes physical sense. The question is how to
best understand the driving phenomena.

2 Mice and Elephant plots and random sam-
pling

The Mice and Elephants plot is a visualization that illustrates the fundamental
theory discussed in Section 1. In particular, it shows how a heavy tailed dis-
tribution can lead to long range dependence, as explained below. This type of
plot is shown in Figure 1. The key idea is that Internet �ßows�, i.e. the set
of packets that make up a single connection, are represented by line segments.
The left (right, resp.) ends of the line segments show the times of the Þrst (last,
resp.) packets in each ßow. Thus each line segment shows the �overall time
of activity of that ßow�. For good visual separation of the line segments, a
random height is used on the vertical axis (essentially the �jitter� idea of Tukey
and Tukey (1990), see also Cleveland (1993)).
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Figure 1: Mice and Elephant plots for full four hour time block. Vertical
bars indicate 15 minute time window shown in Figure 2. This suggests that

all ßows are �mice�.

The data here were HTTP (Web browsing) response times. They were col-
lected during a four hour period, 8:00 AM - 12:00 noon, on a Sunday morning in
April of 2001. This time period was chosen to represent a �light traffic� time.
For a parallel analysis of a heavy traffic time, see Marron, J. S., Hernández-
Campos, F. and Smith F. D. (2002). More detailed graphics for both analyses
are available at the web address: http://www-dirt.cs.unc.edu/marron/MiceElephants/.
For more details on the data collection and processing methods, see Smith,
Hernández-Campos, Jeffay and Ott (2001).
The total number of ßows for the time period in Figure 1 is 1,070,545.

Massive overplotting resulted from an attempt to plot all of them. A simple
and natural approach to the overplotting problem is to plot only a random
subsample. This was done for a subsample size of 5000 (chosen for good visual
effect) in Figure 1, and in the other Þgures in this section.
Figure 1 shows steadily increasing traffic, which is expected behavior on

Sunday mornings (perhaps the times at which begin web browsing is driven by
a wide range of adventures experienced on the previous night!). It also suggests
that there are no long ßows, with the longest visible ßow being less than 5
minutes. This is a very serious mis-impression, that completely obscures the
most important property of the traffic, as noted below
This point becomes clear from a similar graphic, but zoomed into the region

between vertical bars in Figure 1, which represent the central 15 minutes (1/16th
of the total time). Figure 2 shows this zoomed mice and elephants plot. There
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were 59,113 (not far from 1,070,545 / 16) ßows that intersected this time range.
Plotting all would again result in severe overplotting, so only a random sample
of 5000 is plotted.
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Figure 2: Mice and Elephant plots for 15 minute time block. Vertical bars
indicate time span containing 5000 ßows, shown in Figure 3. This show both

�mice� and �elephants�.

The visual impression of Figure 2 is far different from that of Figure 1. In
particular, there are a number of ßows that cross the full 15 minute interval,
which seems quite contrary to the above impression that all ßows are much less
than 5 minutes in duration. This mis-impression is caused by a combination of
the heavy tailed duration distribution and the random sampling process. Be-
cause of the heavy tails, there are only a very few ßows that are very long.
These have only a very small chance of appearing in the randomly selected sam-
ple. E.g. the chance that any of the largest 40 ßows have a chance of appearing
is only about (40 · 5000/1, 070, 545) ≈ 0.05. The number 40 is relevant, since
39 ßows extend the full length of the central one hour time interval. This small
probability of inclusion explains why none of these very long ßows appear in
Figure 1.
It is interesting to zoom in once again. Figure 3 shows the results of repeat-

ing the analysis for the region between the vertical bars in Figure 2. Those bars
do not show 1/16th of the region in Figure 2, because that contains less than
5000 ßows (which would give an inconsistent visual representation). Instead
the bars are chosen so that exactly 5000 ßows intersect the time interval (which
is again centered in the range of the data), which is about 1.3 minutes long
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Figure 3: Mice and Elephant plots for time window containing 5000 ßows.

Figure 3 shows a rather large number of long ßows, and because there is no
sampling, is perhaps �representative of behavior at a given time�. However,
this view is also biased because it shows in some sense �too high a proportion
of long ßows�. The reason is a �length biasing� type of effect: long ßows have
a much greater chance of appearing in any such small interval, yet are a very
small fraction of the population.
The clear conclusion from Figures 1, 2, and 3 stands in stark contrast to

one of the most time honored principles of statistics (and a commonly used
tool in visualization): simple random sampling of these data does not give
a �representative sample�. This problem is caused by the heavy tails, and
there is a general principle at work: simple random sampling will never give a
representative sample in heavy tail situations.
The Þrst open problem proposed in this paper is to Þnd an improved ver-

sion of �representative sample�. A sensible Þrst step may be to decide what
that means. Is there a reasonable mathematical deÞnition of this that makes
sense for heavy tailed distributions? Can classical length biased sampling ideas
perhaps be useful? Are they visually interpretable?
Figures 2 and 3 show that the name �mice and elephants� is sensible for

this graphic. It has become commonplace terminology in the internet research
community for this phenomenon of a very few, very large ßows. This concept
is fundamental to the ideas outlined in Section 1. It is a clear consequence of
the heavy tail duration distributions. It also makes the long range dependence
in the aggregated time series visually clear. In particular, time series of binned
traffic measures (such as packet counts) are essentially vertical sums of the line
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segments in the mice and elephants plots. The above described theory about
heavy tails implying long range dependence is visually clear, given that the very
long �elephant� ßows clearly persist over quite long time ranges. It is not
surprising that the persistence of the elephants results in the often observed
�bursty behavior� of internet traffic.
Another interesting open problem is to use this visualization to motivate

new quantitative measures for understanding the nature of this type of data.
The standard notions of �heavy tails� for the duration distributions, and of
�time series dependence�, are not aimed at describing the full structure of this
data. Instead they are just tools adapted from other areas, which perhaps
result in a somewhat clumsy statistical analysis. Can the quantitative analysis
be sharpened by quantitating other aspects of the full plot?
Mice and elephants visualizations also give a very clear view of the fact that

the standard queueing theory models, with exponential duration distributions,
are grossly inappropriate. This is seen in Figure 4, which is a duplicate of
Figure 3, but for simulated data, with exponential distributions. To keep the
comparison as fair as possible, the real data time range, sample sizes and even
start times are used. Only the duration of each ßow (the length of the line
segment) is simulated. Also the exponential parameter is chosen to give a
population mean that is the same as the sample mean for the real data.
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Figure 4: Mice and Elephant plots for simulated exponentials, in setting of
Figure 3.

Figure 4 shows a completely different type of distribution of ßow lengths,
from the real data shown in Figure 3. In particular, there are no ßows that are
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nearly long enough cover the whole interval, the number of very short ßows is
far fewer, and there are many more �medium size� ßows. This is a consequence
of the �light tail� property of the exponential distribution. Once the mean
is speciÞed, there are constraints on the frequencies of very large and very
small observations. These constraints make the exponential distribution a very
poor approximation to the type of behavior seen in Figures 1, 2 and 3. Thus
these mice and elephants plots clearly illustrate the concept from Figure 1 that
classical queueing models are inappropriate for internet traffic. In addition, the
mice and elephants plot in Figure 4 seems quite consistent with the idea that
when this traffic is vertically aggregated, the resulting time series exhibit only
classical short range dependence.
The above proposed problem of how to subsample for effective mice and

elephants visualization should not be regarded as �one off�. The reason is
that the internet is constantly changing in many ways, and this could become
a standard tool for monitoring change. In particular such monitoring could
show the ultimate resolution to the above controversy, as to whether large scale
aggregation will eventually swamp out long range dependence effects, or whether
the latter will continue through the continued growth of elephants in frequency
and size. An effective solution might also extend well beyond internet traffic,
and become the foundations of a new theory of sampling in heavy tail contexts.

3 Commonality of ßow rates
Another interesting view, of the HTTP response data analyzed in Section 2,
is a scatterplot of the duration (time, i.e. length of the line segments) of each
response, versus the size of the response in bytes (i.e. the amount of data trans-
ferred). Both variables share the heavy tailed �mice and elephants� behavior
demonstrated in Figures 1-4, so a reasonable view of the data comes from plot-
ting both variables on the log scale. Figure 5 shows the resulting scatterplot.
This requires special handling of responses with 0 duration (e.g. this happens
for single packet responses). This was done by dropping such responses from
the sample, which resulted in 382,127 responses appearing in the scatterplot.
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Figure 5: Log - log scatterplot showing how ßow duration time depends on
transmission size. Suggests clusters of ßows with same throughput (rates), as

diagonal lines.

The general tendency in Figure 4 is roughly what one might expect: larger
size responses need more time, so there is a general upwards trend. Horizontal
lines at the bottom of the plot reßect discreteness of very small time measure-
ments. A perhaps surprising feature is the diagonal lines of points present at
larger times and sizes. Not only do the lines appear to be parallel, they also lie
at a 45◦ angle to the coordinate axes, as indicated by the parallel dashed green
line, which has equation y = x − 2. These diagonal lines of points represent
sets of ßows where

log10 time = log10 size+ C,

for some constant C, which is the same as

size = R · time,

where R = 10−C is interpretable as a �constant rate�. Thus the ßows following
each diagonal line have essentially the same rate (deÞned as total size divided
by total rate).
Figure 5 gives a strong visual impression that the large ßows may be �nat-

urally clustered� in terms of rates. This is sensible because rates are naturally
driven by the nature of the network between the source and the destination.
Most of the computers within UNC will likely have quite similar rates to a few
popular web-sites, resulting in similar rates for large numbers of transfers.
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The second main open problem of this paper is to develop methods for
analyzing this aspect of the population. How can the clusters be isolated?
What are the cluster boundaries? How many ßows are in the major clusters?
A start on addressing these issues appears in Figure 6. Here the data are

projected onto the orthogonal solid green line in Figure 5, so the problem is
reduced to studying clusters in univariate data. For easy visual connection
to Figure 5, the data are transformed to the coordinate system which allows
treating the solid green line as the axis. In particular the transformation is:

proj = −2− log10 time− log10 size√
2

.

The denominator of
√
2 makes the transformation length invariant (i.e. a rota-

tion), and the subtraction from −2 gives the most straightforward view of the
solid green line as an axis.
The top panel of Figure 6 shows two displays of the projected data. The

Þrst is the green dots, which are a standard �jitter plot� (again see Tukey and
Tukey (1990) and Cleveland (1993)), where the horizontal coordinate is the
projection value (i.e. location of each data point when projected onto the green
line), and a random vertical coordinate is used for visual separation. The jitter
plot shows only a random sample of 10,000 to avoid overplotting problems.
The second display of the data is the family of blue curves. These are kernel
density estimates (essentially smooth histograms), with a wide range of window
widths. Looking at a family of smooths is the �scale space view� of data, which
is recommended as a practical solution to the traditional problem of bandwidth
choice, see Chaudhuri and Marron (1999) for further discussion.
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Figure 6: SiZer analysis of projected scatterplot. Show many signiÞcant
clusters.

The family of kernel smooths suggests a number of �broad bumps�, and
there are also a number of �small spikes�. It is tempting to dismiss the spikes
as �spurious sampling variability�, however recall that such �clusters� were
suggested in Figure 5, and a possible physical explanation was suggested above.
Furthermore the sample size n = 382, 127 is fairly large, so perhaps those spikes
represent �important underlying structure� in the data?
A useful tool for addressing such exploratory data analysis questions is the

SiZer map shown in the bottom panel of Figure 6. Rows of this map correspond
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to different window widths, i.e. to blue kernel smooths, and the horizontal axis
is the same as in the top panel. Colors are used to indicate statistical signif-
icance of the slopes of the blue curves, with blue (red, resp.) for signiÞcantly
increasing (decreasing, resp.), with purple for regions where the slope is not
signiÞcantly different from 0, and with gray where the data are too sparse for
reliable inference.
The SiZer map shows that all of the �broad bumps� are statistically signiÞ-

cant, as are most of the tall thin bumps. These may not be surprising because
n = 382, 127 allows resolution of quite a few features of the underlying prob-
ability density, in view of the large sample size. More surprising may be the
very small bump at -1.7. This is hardly visible in the blue family, and yet is
clearly statistically signiÞcant in the SiZer map.
The analysis of Figure 6 is not very satisfying, because it seems that perhaps

some of the clusters, that are clearly visible as lines of points in Figure 5, might
be �masked� by the large amount of other data that makes up the �broad peaks�.
A simple approach to this is to repeat the analysis for a suitably threhsolded
sub-sample. Visual inspection of Figure 5 suggests using only the data above
the solid green line, y = −x+ 7. There were 572 such points, still enough for
effective kernel density estimation. The resulting analysis is shown in Figure 7.
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Figure 7: SiZer analysis of scatterplot points above the solid green line in
Figure 5. Shows signiÞcant clusters, but different from those of Fiugre 6.

Thus many more clusters than those in Figure 5 exist.

As expected, the �broad bumps� in Figure 6 have now disappeared. There
are also some very signiÞcant �slim spikes�. Note that the spike near -1.7 is
now much taller in the blue family of curves (essentially all of these data points
have been retained from Figure 6, and now are proportionally a far larger part
of the population). However, note that many of the tall thin peaks in Figure 6
are not present in Figure 7. This shows that much of the �clustered aspect� of
the population actually occurs more in the main body of the main scatterplot
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in Figure 5, and thus can not be teased out by simple thresholding as done in
Figure 7.
Thus, this is a case where the scatterplot of Figure 5 hides a large amount

of interesting population structure. The SiZer analysis is an indirect way of
understanding this. Are there more direct ways of visualizing this type of
structure?
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