Analysis of UNC Link Data

1 million packets, from UNC main connection

Time needed: \sim 3 seconds

Study both "incoming" and "outgoing"

View 1 of UNC Link Data

Packet Arrival Times, i.e. "rates"

SiZer version of smooth histogram

Show UncLinkData2p1d1.mpg and UncLinkData2p1d2.mpg

- Overall high rate
- SiZer and SiCon show many "statistically significant bursts"
- SiZer patterns similar (for in vs. out), suggesting strong correlation.
- More packets outgoing (see density height and time shift)

View 2 of UNC Link Data

Packet Sizes, in bytes

SiZer version of smooth histogram

Show UncLinkData2p2d1.ps

Nicer on log scale???

Show UncLinkData2p3d1.mpg and UncLinkData2p3d2.mpg

- widely separated values
- some common sizes (e.g. 40 bytes)
- $\min = 28$, $\max = 1500$
- more data outgoing (bigger packets)

View 2 (cont.)

Summary:

Percentages for special sizes:

Size	Incoming	Outgoing
28	0.01%	0.02%
40	37%	25%
1500	12%	33%

View 3 of UNC Link Data

Packet Sizes per unit time

SiZer: averages over different time scales

Show UncLinkData2p5d1.mpg and UncLinkData2p5d2.mpg

- Statistically significant changes at many scales
- Bursty behavior
- Outgoing larger than incoming
- No apparent correlation

Views 4 and 5 of UNC Link Data

Views of binned data,

10,000 bins \Rightarrow scale $m \approx 0.02$ sec & ~100 obs. per bin

Study both:

- Counts (i.e. # packets in bin)
- Packet Size Totals (sum'd over bin)

View 4 of UNC Link Data

Autocorrelations

Show UncLinkData2p11d1.ps, UncLinkData2p11d2.ps, UncLinkData2p12d1.ps and UncLinkData2p12d2.ps

Big Surprise:

Have "mixture" of ($\sim 10\%$) long range dep. and ($\sim 90\%$) "white noise"

Possible Reasons???

Studying wrong scale?
R&W: *m* > "packet round trip time" ⇒
⇒ Fractional Gaussian Noise

2. Mixture of session/data types?

3. ???

View 4 of UNC Link Data (cont.)

Autocorrelations (cont.)

- "exponential intuition" from $y \approx a \cdot e^{b \cdot x} \Leftrightarrow \log y \approx b \cdot x + \log a$
- exp. fits with $f \approx 0.98$ suggest "unit root", i. e. long range dependence
- "polynomial intuition" from $y \approx a \cdot x^b \Leftrightarrow \log y \approx b \cdot \log x + \log a$
- poly fits, with powers $\in (-.28, -.08)$, suggest Hurst parameters: $H \in (0.86, 0.96)$

View 5 of UNC Link Data

Marginal Distributions

Show UncLinkData2p13d1.ps, UncLinkData2p13d2.ps, UncLinkData2p14d1.ps and UncLinkData2p14d2.ps

- All are "roughly" both normal and log-normal
- Bin counts more normal?
- Packet Sizes more lognormal?
- Sizes have "few very small values"?

View 6 of UNC Link Data

Autocorrelations across scales

Best case: Packet Sizes, Incoming

Show UncLinkData2p22d1.ps

Coarser Scales \Rightarrow

- \Rightarrow overall more dependence
- \Rightarrow steeper at left
- \Rightarrow more variability

View 6 of UNC Link Data (cont.)

Summaries of parameters:

Show UncLinkData2p22d1.ps

- R^2 for Long Range Dependence:
 - "low" for "small" $m \in (10^{-3}, 10^{-2})$

- "increases" for
$$m \in (10^{-2}, 10^{-1})$$

- "large" for
$$m \in (10^{-1}, 1)$$

Power, f, Hurst Parameter:

- Correlated
- "increasing for small scales *m*

View 6 of UNC Link Data (cont.)

Other cases (outgoing, Bin Counts)

- somewhat similar
- more "noise" problems???

Worst case: Outgoing Packet Sizes

Show UncLinkData2p22d2.mpg and UncLinkData2p22d2.ps

- Fit lines sometimes slope down
- Then f > 1 ?!?
- and Hurst Param. > 1 ?!?

Should Pursue Further?

- Study autocorr's at coarses scales *m*? (needs more data)
- 2. Modify simulations, to show observed autocorr. Structure?
- 3. Careful look at sessions (to explain autocorr.)?
- 4. Other explanations of autocorr.?
- 5. Investigate "few small sizes"?