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Abstract

The SiZer technique is used to study the homogeneity of a point process
of Internet traffic ßow start times. It is seen that a homogenous Poisson
process is an inappropriate model, because it does not yield observed
statistically signiÞcant burstiness. Some Weibull waiting processes gives
better, but still inadequate performance. A clustered Poisson process
gives the best Þt.

1 Introduction
Simulation of Internet traffic is a challenging and interesting problem. It is
important for both Internet researchers (who try to improve the performance of
the Internet itself), and also for testing of many types of Internet based business
applications. There is a strong need for involvement of creative statisticians,
both in the development of the simulation methods, and in the assessment
of their performance. This paper discusses an example demonstrating the
usefulness of the relatively new statistical method, SiZer, and showing that
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simulation model development and statistical model assessment can and should
interact.
Most of Internet traffic is composed of IP (Internet Protocol) ßows. These

are the transfers of data from one computer to another, as described in RFC
791, see Postel (1981). An IP ßow is deÞned herein as a set of packets carrying
IP datagrams that share the same sending and receiving addresses (more specif-
ically, that have identical IP addressing 5-tuples consisting of protocol number,
source IP address and port number, and destination IP address and port num-
ber). Transport protocols, such as TCP (Transmission Control Protocol) and
UDP (User Datagram Protocol), provide higher-level communication services
built on top of IP that support the exchange of information between applica-
tions. Web browsing, email, telnet and many others use TCP over IP, while
audio/video streaming, name resolution, and other applications use UDP over
IP. IP is therefore the fundamental building block of the Internet, and its com-
plex behavior is the result of aggregating the communication patterns of very
diverse applications. Consequently, modeling IP is a remarkably challenging
problem that has attracted a lot of attention over the last decade.
One way to simulate overall traffic is to simulate the ßows, and then to

aggregate them. There are three essential components of this, the point process
of ßow starts, the duration distribution of the ßow, and the structure of the
transmission within the ßow. In this paper only the point process of the ßow
start times is considered. See Paxson (1994), Danzig, Jamin, Caceres, Mitzel,
and Estrin (1992), Cleveland, Lin and Sun (2000), Feldmann (2000) and Cao,
Cleveland, Lin and Sun (2001) for important work on this. See Garrett and
Willinger (1994), Leland, Taqqu, Willinger, and Wilson (1994) and Paxson and
Floyd (1995) and Crovella and Bestavros (1996) for access to the large literature
on ßow duration distributions, and some very interesting implications of that
work. See Kulkarni, Marron and Smith (2000) for an approach to simulation
of within ßow traffic structure.
Figure 1 is a real data visualization of the point process of the start times of

n = 115548 IP ßows. Each dot represents one ßow start, with the x coordinate
representing the start time, and a �jittered� random y coordinate to separate
the dots for easy viewing. Because showing all of the data would result in
massive overplotting, only a random sample of 2000 is shown here. All data
sets in this paper are one dimensional (events occurring in time), with some
vertical jittering (see e.g. pages 121-122 of Cleveland 1993) occasionally added
just for visualization. The data were collected at the main link between the
University of North Carolina at Chapel Hill and the rest of the Internet, on a
Sunday morning in 2000. The methodology used in this traffic capturing effort
is described in Smith, Hernandez-Campos, Jeffay and Ott (2001). Here all
packets in a time interval of approximately 40 minutes are considered, and a dot
is shown the Þrst time a new pair of sending and receiving address is observed.
To avoid the boundary effect of dots piling up on the left end (indicating ßows
extending beyond the left in an unobservable way), the left 20% of the picture
is not shown. Using this visualization, it is hard to notice structure in the data
that is different from a random uniform distribution of the points.
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Figure 1: Visualization of IP ßow start times, from main link between UNC
and the Internet. Random sample of 2000 from 111822.

A simple model for random uniformly distributed events, such ßow start
times as shown in Figure 1, is a Poisson point process. See any standard
probability text covering point processes, e.g. Chapter 3 of Resnick (1987),
for a detailed description and development. Such a model is characterized by
independent exponential inter-arrival times (time spacing between consecutive
dots). If the data are binned to any equally spaced grid, the bin counts are
independent, and have a Poisson distribution with the same mean parameter
over different bins. This mean parameter is called the �intensity�, and the full
process is called a �Homogeneous Poisson Process�. A very relevant variation
is the �Nonhomogeneous Poisson Process�, where the intensity is a function of
location, i.e. the points are more dense in some locations and more sparse in
others.
The goal of this paper is careful investigation of the time varying intensity

function of the point process shown in Figure 1, and in the intensity of some
simulation models. This function can be estimated using essentially kernel
density estimation methods. A critical question is whether or not �bumps� ob-
servable in the kernel smooth represent important departures from the standard
homogeneity structure, or instead could be explained by the natural sampling
variability inherent to the Poisson Process. The SiZer method is a powerful
and convenient visual device for answering this question.
A quick introduction to SiZer, together with an analysis of the data in Figure

1 is given in Section 2. It is seen that the data in Figure 1 is clearly not a
homogeneous Poisson model. In particular, the data exhibit more �clumping�
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than a standard homogeneous Poisson Process (i.e. a tendency towards �more
than random clustering�). The SiZer analysis shows that this difference is
statistically signiÞcant. This motivates a search for a start time model with
characteristics closer to the data.
Cleveland, Lin and Sun (2000) and Cao, Cleveland, Lin and Sun (2001)

have suggested that inter-arrival times may be better Þt by non-exponential
Weibull distributions. They construct a start time model by combining Weibull
interarrivals with an appropriate long range dependence structure.
In this paper, independent Weibull inter-arrival times (with shape parameter

less than 1) are aggregated to give a non-Poisson start time process, that might
be expected to yield clumping of the type found in Section 2. Such processes are
considered in Section 3, where SiZer is used to understand the characteristics of
two variations of this. Unfortunately, sensible estimates of the Weibull shape
parameter do not give the right level of bumps. While bumpiness similar
to that in the real data can be generated using a deliberately tuned Weibull
shape parameter, it is seen that the inter-arrival times are then completely
inappropriate.
This motivates an alternate model, the �Clustered Poisson Process�, consid-

ered in Section 4. It is seen that an appropriately tuned version of this model
has much better SiZer properties, that are much closer to those of the real data.
Hence the Clustered Poisson Process is recommended for further investigation
as a leading candidate for the simulation of IP ßow start times. Moreover, these
results highlight the importance of the inclusion of ßow dependencies in traffic
models. The behavior of some applications that drive Internet traffic provides
an intuitive explanation of these dependencies. In particular, the start times of
worldwide web ßows naturally cluster around web pages.

2 Initial SiZer Analysis
SiZer (shortening of SIgniÞcance of ZERo crossings of the derivative) is a method
for understanding statistically signiÞcant features in smoothing methods. These
methods include scatterplot smoothing, i.e. nonparametric regression, and
smoothed histograms, i.e. kernel density estimation. Poisson intensity estima-
tion is very closely related to kernel density estimation. In particular, Homoge-
neous Poisson Process data, conditioned on the sample size (the total number
of points in the picture), have a uniform probability density. So Þnding non-
homogeneity of point process data is equivalent to Þnding non-constancy in the
slope of the corresponding density.
A SiZer analysis of the data shown in Figure 1 appears in Figure 2. The

top panel shows a number of blue curves, which are kernel density estimates.
reßecting the local intensity (i.e. higher where there are more, lower where there
are less) of the points displayed in Figure 1 (a subset of which are displayed as
jittered green dots). There are several blue curves corresponding to different
levels of �smoothing�. The level of smoothing is roughly the binwidth of the
underlying histograms, but more precisely is the �bandwidth�, i.e. the standard
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deviation of the smoothing window functions.
Some of the blue curves appear quite smooth, suggesting clear homogene-

ity of the point process in Figure 1. These correspond to a large bandwidth.
Others, corresponding to smaller bandwidths, suggest some regions of nonho-
mogeneity, i.e. �bumps� in the distribution of points (suggesting �burstiness�)
in Figure 1.
But do these bumps represent important underlying structure, i.e. genuine

nonhomogeneity of the process, or are they simply artifacts of the natural Pois-
son variability? This important question is addressed using the SiZer method
developed by Chaudhuri and Marron (1999). A detailed introduction, with
examples, can found at the web site:

http://www.stat.unc.edu/faculty/marron/DataAnalyses/SiZer_Intro.html.

An important component of SiZer is the �scale space� view of smoothing, where
a wide family of smooths, such as those in the top panel of Figure 2, is consid-
ered.
The density estimation version of the SiZer map, shown in the bottom panel

of Figure 2, is based on conÞdence intervals (at signiÞcance level α = 0.05) for
the slopes of the kernel density estimates. Experimentation shows that changing
this signiÞcance level over reasonable values (α = 0.001 to α = 0.2) results in
generally small changes in the SiZer map The rows of the map indicate different
scales (i.e. bandwidths), and each row corresponds to a blue curve shown in
the top panel. When the conÞdence interval is completely above 0, the slope is
signiÞcantly increasing, and the color blue is used. When it is completely below
0, it goes down, where red is used. When the conÞdence interval contains 0, the
slope is unclear, and the color purple is used. Visual correspondence between
the scales (bandwidths) and the inference being done in the SiZer map is given
by the dashed white curves. These show the �effective window width� of the
smooths, in terms of plus or minus two standard deviations of the Gaussian
window function at each level of resolution.
The conÞdence intervals used in SiZer are based on standard central limit

theory calculations. This requires a reasonable number of data points in each
window. This is not an issue in this paper, because of the large size of the data
sets. For smaller data sets, the fourth color of gray is used in locations where
there is not enough data for reliable inference.
An important issue is to make the conÞdence intervals simultaneous, i.e. to

take the multiple comparison problem into account. This is done using an
�effective number of independent blocks� adjustment.

5



500 1000 1500 2000
4

5

6

7

x 10-4

time (sec)

in
te

ns
ity

Intensity Estimates

SiZer analysis

time (sec)

lo
g 10

(h
)

600 800 1000 1200 1400 1600 1800 2000 2200

1

1.5

2

2.5

3

Figure 2: SiZer analysis of the full data set from Figure 1. The family of
intensity estimates appears in top panel, and SiZer map in the bottom. The

SiZer map reveals statistically signiÞcant burstiness.

The SiZer map in Figure 2 shows a large amount of nonhomogeneous struc-
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ture in the data displayed in Figure 1. The red at the top shows that at larger
scales there is statistically signiÞcant downward trend in start times. This is
caused by the fact that simply cutting off the Þrst 20% of the ßows is only a
crude boundary adjustment, and even over this range, ßows are still a little
more likely to start at the beginning than at the end. The effect is not strong,
but with n = 115548 data points, SiZer will Þnd even small departures from
homogeneity.
The lower part of the SiZer map shows many red and blue regions. These

correspond to �Þner scale views of the data�, i.e. the use of smaller bandwidths
(essentially histogram binwidths). The red and blue colors show that the slopes
of the blue curves, which make up the bumps in the top panel, are steeper than
would be generated by a homogeneous Poisson process. In other words this
point process is more bursty than data simulated from a naive Poisson model.
This idea is checked in Figure 3, where the SiZer analysis is repeated for data

simulated from a homogeneous Poisson Process. These simulated data use the
same time interval, and are conditioned on the same number n = 115548 of
points. Note Þrst that the family of blue curves in the top panel of Figure 3
include some very smooth (large scale) members, and some wiggly (Þne scale)
members. The magnitudes of the small scale wiggles appear to be perhaps
smaller in Figure 3 than in Figure 2. The corresponding SiZer maps show that
this difference is very marked in the sense of statistical signiÞcance. The Figure
3 SiZer is almost completely purple, indicating that the wiggles in the top panel
are no larger than expected due to the natural variability in a homogeneous
Poisson process.
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Figure 3: SiZer analysis of simulated homogeneous Poisson process data,
showing that SiZer does not label bursts here as statistically signiÞcant.

There are some blue and red regions in the SiZer map, that are caused
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by boundary effects. In all the SiZer maps shown in this paper, boundary
effects are mitigated using a simple �reßection� adjustment, where the data are
reßected beyond the endpoints and included in the estimation process. See e.g.
Section 2.10 of Silverman (1986) or Section 6.2.3.5 of Scott (1992) for description
and further discussion. While this approach signiÞcantly decreases boundary
effects, these show that they do not disappear completely.

3 A Weibull waiting time model
The lesson from Figure 2, that the point process of inter-arrival times is not
exactly a Poisson process has already been observed, in other contexts. For ex-
ample, Cleveland, Lin and Sun (2000) and Feldmann (2000) show that a Weibull
distribution with a shape parameter less than one (thus not exponential, in the
direction of �heavier tails�) frequently provides a better Þt to the distribution
of packet inter-arrival times.
Heavier tailed inter-arrival time distributions are expected to produce �more

than the usual burstiness� in the overall process, as observed in Figure 2, because
there will be more longer and also more shorter interarrivals than expected for
the exponential waiting time. This motivates a careful look at the inter-arrival
time distribution.
The distribution of the inter-arrival times for the data of Figure 1 is analyzed

in Figure 4a, using a Q-Q (Quantile vs. Quantile) plot. This is a graphical
method for assessing the goodness of Þt of the exponential distribution to the
data. The main Q-Q plot is the red curve, which shows the data quantiles (i.e.
the sorted data values) on the vertical axis, with the corresponding theoretical
quantiles, from the exponential distribution, on the horizontal axis. When the
theoretical distribution is a good Þt to the data, the red curve should be �close�
to the forty Þve degree line through the origin, shown here as a diagonal green
line. A serious practical hurdle for this type of analysis, has been understanding
what is meant by �close�, because the red curve never completely follows the
diagonal green line due to sampling variability. The envelope of blue curves
provides a simple visual accounting for this natural variability. Each of these
curves is a similar Q-Q plot, where the �data� are simulated from the theoretical
distribution (with the same sample size of n = 115548), to reßect the variability
inherent to the sampling process. Good visual impression comes from overlaying
100 such blue curves. When the theoretical distribution is a good Þt to the
data, the red curve should lie mostly within the blue envelope. The observed
substantial departures of the red curve from the blue envelope indicate strong
lack of Þt between the data and the theoretical distribution.
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Figure 4a: Q-Q analysis (red curve). of the data from Figure 1 compared to
an Exponential distribution (with parameters shown). Blue envelope shows
sample variability, making it clear that the Exponential distribution is a poor

Þt.

In Figure 4a, the theoretical distribution (with quantiles shown on the hor-
izontal axis) is the Exponential distribution (i.e. the Weibull distribution with
shape parameter α = 1), with scale parameter σ = 0.0157 (taken to be the
sample mean, which is the maximum likelihood estimate).
Figure 4a shows that the Exponential distribution does not provide an ac-

ceptable Þt to the inter-arrival times for the point process data shown in Figure
1, because the red curve is far outside the blue envelope in several places. Fur-
thermore, it is seen that the real data have a �heavier tail� than the exponential
because the red curve is well above the blue envelope for the larger quantiles.
This is completely consistent with the lesson from Figure 2, that the original
data are not well Þt by a homogeneous Poisson process.
The Q-Q plot in Figure 4a also suggests that perhaps a fairly simple modiÞ-

cation of the theoretical distribution could yield an appropriate Þt. In particu-
lar, some modiÞcation of the Weibull shape parameter might work. This path
is pursued in Figure 4b, where the theoretical underlying exponential distribu-
tion has been replaced by a more general Weibull distribution. This time the
Weibull parameters α and σ have been estimated by �quantile matching�, in
particular they have been chosen to make the theoretical 0.99 and 0.999 quan-
tiles the same as the data (i.e. the red curve crosses the green line at these two
points indicated by circles in Figure 4b).
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Figure 4b: Q-Q analysis (red curve). of the data from Figure 1 compared to a
Weibull distribution (with parameters shown, estimated by quantile matching).

Blue envelope shows this Weibull distribution gives an acceptable Þt.

This Q-Q plot (the red curve) lies almost entirely within the blue envelope,
suggesting that this Weibull distribution gives an acceptable Þt to the data.
The estimated shape parameter is α = 0.90, which means a tail that is heavier
than for the Exponential distribution, which appears to be consistent with the
statistically signiÞcant burstiness observed using the SiZer method in Figure 2.
A natural way to use this information in an improved start time simulation

model, is to use independent Weibull variables (with parameters σ = 0.0148
and α = 0.90) to generate the spacings (inter-arrival times) between the events
in a point process. It is seen in Figure 4b that the Weibull distribution is
correct, but the assumption of independence is not so clear. This issue is
addressed in Figure 5, where a SiZer analysis is used to assess the burstiness
of this independent Weibull(0.9) point process. As above n = 115548 data
points were simulated. The total time span shown is the sum of the simulated
realizations.
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Figure 5: SiZer analysis of start times simulated by Weibull(0.90) renewal
model. Shows structure closer to homogeneous Poisson process, than to real

data.
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The magnitude of wiggles in the blue family of intensity estimates in the
top panel looks more like the simulated data in Figure 3 than the real data in
Figure 2. This impression is conÞrmed by the SiZer map in the bottom panel,
which shows that none of the bursts are statistically signiÞcant. The SiZer map
also shows a small amount of boundary effect, as in Þgure 3. This shows that
the point process in Figure 2 is clearly not an independent Weibull(0.9) inter-
arrival process. While the Weibull(0.9) distribution is correct, the independence
is not. Generating dependent processes is much more complicated (because a
dependence structure needs to be speciÞed). Some ideas for addressing this
problem are given in Section 4.
A surprising feature in the SiZer map is the red band near the top. This in-

dicates a statistically signiÞcant downward trend, which suggests that the heavy
tail of the Weibull inter-arrival distribution creates some perhaps unexpected
type of spurious dependence.
Any interesting side issue is whether any independent Weibull inter-arrival

time process could generate the type of burstiness observed in Figure 2? In
particular, heavier tailed Weibull distributions should induce both longer and
shorter waiting times, which should result in signiÞcant burstiness. Some exper-
imentation with the Weibull shape parameter showed that α = 0.45 was quite
interesting in this respect. The resulting SiZer analysis is shown in Figure 6
(using the simulation scheme as for Figure 5, except that now α = 0.45). Other
values of α will be of interest to some, but are omitted here to save space. How-
ever, these can by viewed in the Þles UNC2000FlowSimWeibToy1IntArrs20.ps,
UNC2000FlowSimWeibToy2IntArrs20.ps, UNC2000FlowSimWeibToy3IntArrs20.ps
and UNC2000FlowSimWeibToy4IntArrs20.ps in the web directory

http://www.unc.edu/depts/statistics/postscript/papers/marron/NetworkData/StartTimeSiZer/
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Figure 6: SiZer analysis of start times simulated by Weibull(0.45) renewal
model. Shows features similar to real data, but with some differences.

The magnitude of the wiggles in the top panel of Figure 7 is similar to those in
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Figure 2, although the �frequency� may not be the same. The corresponding
structure in the SiZer maps are similar near the medium scales, i.e. window
widths near log10 h ≈ 1.5. However, they are different at the Þner scales, i.e. the
smaller window widths. This shows that while the independent Weibull(0.45)
inter-arrival process gets the medium scale burstiness approximately correct, it
only does so at the cost of introducing some Þne scale burstiness that is not
present in the real data.
If one is willing to ignore this additional small scale burstiness it might be

tempting to use this as a simulation model for IP ßow start times. In this case
one should check how well the Weibull (0.45) inter-arrival times approximate
the true inter-arrival times. The Q-Q plot, for comparing the original data with
the theoretical distribution of Weibull(0.45) is shown in Figure 7.
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0.050.10.150.2

Weibull, Q

D
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Q

Figure 7: Q-Q analysis of start times simulated by Weibull(0.45) renewal
model. Shows this model clearly inappropriate.

Figure 7 shows that the Weibull (0.45) is an extremely poor Þt of the inter-
arrival distribution on the data shown in Figure 1. The conclusion of this
section is that independence of the inter-arrival distribution is an unworkable
assumption.

4 A clustered Poisson model
There are many possibilities for generation of point processes with dependent
inter-arrival times. A sensible approach is to start with simple processes, and to
at least initially give most weight to models with substantial physical interpre-
tation. Gennady Samorodnitsky suggested the simple and intuitive Clustered
Poisson model as satisfying these criteria. This model was also proposed and
studied by Santiee, Nuzman, Sweldens, and Weiss (2001).
The Clustered Poisson model starts with an underlying homogeneous Pois-

son Process. At each of those event times, a random number of additional
�nearby� points is generated and the combined set of points are the events
of the full process. This process makes physical sense for many applications
that communicate using IP, such as the world-wide web. Web browsers usually
make a Þrst request to download the source code of a given web page. If a
page has embedded objects (such as graphics, banner ads or internal frames),
the web browser opens a new connection for each object download1. Studies

1This behavior corresponds to the non-persistent version of HTTP, which accounted for
85% of all the HTTP ßows in the data set. See Smith, Hernandez-Campos, Jeffay and Ott
(2001) for more details.
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of web traffic, such as Mah (1997), Barford and Crovella (1998) and Smith,
Hernandez-Campos, Jeffay and Ott (2001), show that most pages do have em-
bedded objects, and the size of these objects is small. As a consequence,
accurate modeling of this ßow arrival process is critical.
As a simple Þrst attempt, clusters were simulated according to a Poisson

distribution, with mean parameter λ. Because of the above idea of web pages
calling for additional ßows, cluster points always appear later in time than the
initial Poisson point. A very simple distribution for the cluster points is the
right triangular density, supported on the interval [0, τ ], with peak at 0. This
reßects the idea that cluster points are somewhat more likely to be closer to the
original Poisson point, and have a compactly supported distribution (perhaps
related to the original ßows round trip time?). All of the above choices should
be regarded as crude Þrst approximations. It would be very interesting to
update these assumptions, particularly based upon the study of the underlying
processes at work with IP ßows.
These assumptions reduce the model choice to only the choice of λ and

τ , as well as the Poisson intensity of the original process. For each λ, the
latter was chosen to give a similar number of points, over nearly the same
time interval as the original data in Figure 1. Choice of the parameters λ
and τ , was then done with a trial and error process, with the goal of emulat-
ing the SiZer performance of Figure 2. Some of the intermediate steps are
interesting, but are not shown here to save space. These can found in the
Þles UNC2000FlowSimClustPois11s20.ps, UNC2000FlowSimClustPois12s20.ps,
UNC2000FlowSimClustPois13s20.ps and UNC2000FlowSimClustPois14s20.ps in
the above web directory, but are not shown here to save space.
The best simulated result, using the parameters λ = 16 and τ = 20, is shown

in Figure 8.
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Figure 8: SiZer analysis of start times simulated by Clustered Poisson model.
Suggests similar structure to real data, analysed in Figure 2.

The wiggles in the top panel of Figure 8 have a visually similar random
structure to those in the top panel of Figure 2. The SiZer map also has a
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somewhat similar structure for the medium and also small scales (in the sense
of a similar distribution). The large scale structure is different, but again this
seems to be within the range of �reasonable distributional differences�.
Another type of conÞrmation comes from a Q-Q analysis, as in Figure 4.

This showed a reasonable Þt of the Weibull distribution, except for some bound-
ary distortion. It is not shown here to save space, but is available in the Þle
UNC2000FlowSimClustPois14QQlog.ps in the above web directory.
Hence the Clustered Poisson model is recommended for further work as a

candidate model for the simulation of IP ßow start times. It is expected that a
deeper analysis of the cluster number parameter λ, and the cluster distribution,
will reveal new insights about the working of Internet traffic.
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