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Abstract
We report the results of a large-scale empirical study of web
traffic. Our study is based on over 500 GB of TCP/IP protocol-
header traces collected in 1999 and 2000 (approximately one
year apart) from the high-speed link connecting The University
of North Carolina at Chapel Hill to its Internet service pro-
vider. We also use a set of smaller traces from the NLANR re-
pository taken at approximately the same times for compari-
son. The principal results from this study are: (1) empirical data
suitable for constructing traffic generating models of contem-
porary web traffic, (2) new characterizations of TCP connection
usage showing the effects of HTTP protocol improvement,
notably persistent connections (e.g., about 50% of web ob-
jects are now transferred on persistent connections), and (3)
new characterizations of web usage and content structure that
reflect the influences of “banner ads,” server load balancing,
and content distribution. A novel aspect of this study is a dem-
onstration that a relatively light-weight methodology based on
passive tracing of only TCP/IP headers and off-line analysis
tools can provide timely, high quality data about web traffic.
We hope this will encourage more researchers to undertake on-
going data collection and provide the research community with
data about the rapidly evolving characteristics of web traffic.

1. Introduction and Background
By any measured quantity — bytes, packets, or flows — web
traffic has become the single largest consumer of Internet re-
sources [9, 22, 30]. Good characterizations of how web traffic
“looks” in the network are essential for networking experi-
ments investigating end-to-end performance issues in the web.
Usually this involves constructing a model of web traffic and
using the model to introduce synthetically generated web traffic
into a simulation or laboratory network. For example, a critical
element of networking research involving the effect on web
traffic of TCP’s end-to-end congestion-control mechanism, or
router-based mechanisms such as RED, is the generation of
synthetic web traffic for experiments [4, 8, 18, 25]. Paxson
and Floyd [28] have presented compelling arguments for the
importance of using application-dependent but network-
independent traffic sources layered over (real or simulated) TCP
implementations in such experiments. Constructing a traffic
generator for TCP applications depends ultimately on the
availability of high quality measurement data that represents
application characteristics. In this paper we address this re-
quirement for web traffic. We present the results of a measure-

ment study that collected over 500 GB of TCP/IP headers in
1999 and 2000 from a high-speed link connecting our univer-
sity campus to its Internet service provider. *

While one motivation for our measurements was to provide the
modeling foundation for generating synthetic web traffic, an-
other motivation was to provide new results on the effects re-
cent versions of the HTTP protocols are having on the charac-
teristics of web traffic in the Internet. For example, measure-
ments of TCP connection usage for early versions of the HTTP
protocols pointed to clear inefficiencies in design, notably the
creation of a different TCP connection for each web object ref-
erence [23]. Recent revisions to the HTTP protocol, notably
version 1.1 [24], have introduced the concepts of persistent
connections and pipelining. Persistent connections are pro-
vided to enable the reuse of a single TCP connection for multi-
ple object references at the same IP address (typically embedded
components of a web page). Pipelining allows the client to
make a series of requests on a persistent connection without
waiting for a response between each request (the server must,
however, return responses in the same order as the requests are
sent). As browsers and servers have migrated to support the 1.1
version of HTTP, there has been very little data collected from
production networks to show how these protocol modifications
have changed the usage and behavior of TCP connections. Our
results show that HTTP 1.1 is already producing very signifi-
cant effects. We also show that other rapidly evolving devel-
opments such as the presence of “banner ads,” server load bal-
ancing, and content distribution networks are influencing sev-
eral observable characteristics of TCP connections in the web.

A final motivation is related to methodology. Our approach
emphasizes simplicity and a passive, non-invasive method of
measuring. We used widely available packet-capture tools to
gather traces consisting only of TCP/IP headers, each time-
stamped with its arrival time. Using only the information in
the TCP/IP headers and knowledge of the TCP and HTTP proto-
cols, we created trace-processing tools to analyze individual
TCP connections and reconstruct properties of the higher-level
protocol (HTTP) from the TCP segment headers. We explicitly
decided not to capture HTTP protocol headers mostly because of
privacy concerns about tracing users’ data falling beyond the
TCP/IP headers1 and also to reduce the volume of data in traces
covering extended periods of time. We show that the use of
relatively straightforward methodology can produce timely,
high quality data and we hope to encourage more researchers to
undertake ongoing data collection programs. If this happens, i t
will help provide the research community with more data about
the rapidly evolving characteristics of web traffic.
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1 IP addresses are made anonymous in our traces to remove privacy
concerns related to identifying individual users.
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From the analysis of our trace data, as well as data acquired by
NLANR during the same periods, we make a number of observa-
tions about the evolving nature of web traffic, the use of the
web, the structure of web pages, the organization of web serv-
ers providing this content, and the use of packet tracing as a
method for understanding dynamics of web traffic. Specifically:

•  From a methodology standpoint, we conclude that a substan-
tial and detailed analysis of HTTP request/response exchanges
is possible given only the TCP/IP headers of packets sent
from servers to clients. Given only a unidirectional trace, one
can discern transport protocol phenomena, the effects of
higher-level protocols (e.g., the use of persistent HTTP con-
nections), and application-level phenomena (e.g., the num-
ber of embedded objects and the number of servers delivering
this content). Moreover, these data can be quickly and
cheaply obtained. The most recent traces were acquired with
commodity PCs and publicly available packet capturing
software. We have also developed a rich set of tools for proc-
essing unidirectional packet traces that enabled us to present
much of the data in this paper less than a month after the raw
traces were acquired.2

•  We conclude that traces of web traffic must be quite long (on
the order of hours) in order to fully capture the tail of the dis-
tribution for measures such as the size of responses from
servers to clients. We have observed that a very small number
of responses from servers are multiple hundreds of megabytes
(some close to a gigabyte) and that the TCP connections car-
rying some responses can be active for upwards of an hour.

•  From a protocol usage standpoint, we observe that (port 80)
web traffic has declined recently as a percentage of the total
number of TCP connections recorded. For web traffic, 15% of
all the TCP connections carrying HTTP request/response ex-
changes are persistent in the sense that they actually carry
more than one request/response exchange. These persistent
connections deliver 40-50% of all the web objects requested
and these objects account for approximately 40% of all the
bytes transferred. Thus, although the fraction of connections
that are persistent is small, their use represents a 50% reduc-
tion in the total number of TCP connections required to de-
liver web content (compared to a similar environment in
which persistent connections are not used).

•  From an analysis of HTTP responses, we see that 65% of all
web pages are constructed entirely by responses from a single
server while 35% of the pages receive content from two or
more servers. Close to 70% of the consecutive top-level page
references go to an IP address that is different from the address
used for the previous top-level page reference [29]. We specu-
late that this reflects the increasing trend of large organiza-
tions to manage web sites with a “server farm” for load bal-
ancing.

•  We also see a year-to-year increase in the number of embedded
objects per web page and an increase in the frequency of
smaller objects. This is possibly due to the pervasive use of
“banner adds” and icons to decorate pages. Overall the num-
ber of bytes transferred to deliver embedded objects is in-
creasing [29].

•  Overall we see a slight year-to-year increase in the frequency
of small response objects but a marked increase in the size of

                                                                        
2 It is our intent to distribute both our tools and the data we have ac-
quired (and are continuing to acquire).

the largest objects transferred. We find that the top 15% of
object sizes account for 80% of the bytes sent by servers (ob-
jects greater than 1 MB in size account for 25% of the bytes).

•  From an analysis of HTTP requests we see novel uses of web
requests to implement applications such as “web email.”
These uses result in a shift in the distribution of request sizes
because files are being transferred to servers (e.g., email at-
tachments) in the context of an HTTP request.

The remainder of this paper is organized as follows. Section 2
reviews the literature in previous measurement studies of net-
work traffic in general and web traffic in particular. We also
review the methods used to gather and process network traces.
Section 3 gives an overview of our measurement methodology
and presents summary statistics for the traces comprising our
study. Section 4 presents our methodology for reconstructing
and analyzing HTTP connections given only the information
contained in TCP/IP headers. Section 5 presents the analysis of
user browsing metrics such as think time. Section 6 gives our
analysis of the usage of TCP connections by HTTP including
the effects of persistent HTTP connections. Section 7 analyzes
HTTP request and response sizes. Section 8 discusses the limi-
tations of the methodology used and how these limitations
introduce uncertainty in the reported results. Finally, Section 9
summarizes the results and conclusions of our study.

2. Related Work
Two important measurement efforts that focused on applica-
tion-specific traffic models, but which preceded the growth of
the web, were conducted by Danzig et al., [7, 13, 14], and by
Paxson and Floyd [26, 27]. More recently, measurements to
characterize web usage have become a very active area for re-
search. Because caching and content delivery are widely con-
sidered vital to the long-term viability of the web, most of the
high-quality data currently available is focused on providing
inputs to cache or content delivery evaluations, e.g., [15, 16,
19, 32, 33]. For these studies, the critical data are traces or logs
of URL references, typically collected at proxies or servers.
There is much less data available that is focused on how web
browsing behaviors by users result in the creation of network
traffic. For networking studies, the critical data are related to
characterizing the TCP connections between web browsers and
servers in terms of connection establishment rates and the
sizes and timing of exchanges of request and response data.

Web traffic generators in use today are usually based on data
from the two pioneering measurement projects that focused on
capturing web-browsing behaviors: the Mah [20], and Crov-
ella, et al., [3, 5, 11, 12] studies. Traffic generators based on
both of these sources have been built into the widely used ns
network simulator [6] that has been used in a number of studies
related to web-like traffic, e.g., [18, 25]. These models have
also been used to generate web-like traffic in laboratory net-
works [4, 8]. For both sets of measurements, the populations
of users were highly distinctive and the sizes of the traces gath-
ered were relatively small. Mah captured data reflecting a user
population of graduate students in the Computer Science De-
partment at UC Berkeley. His results were based on analysis of
approximately 1.7 million TCP segments carrying HTTP pro-
tocols. The measurement programs by Crovella and colleagues
reflected a user population consisting primarily of undergradu-
ate students in the Computer Science Department at Boston
University and in aggregate represented around 1 million refer-
ences to web objects. In addition, both sets of data are now
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relatively old (especially as measured in “Internet time”). The
Mah data were collected in 1995 and the Crovella, et al., data in
1995 and 1998. It is especially important to note that these
studies were conducted before significant deployment of HTTP
version 1.1 protocol implementations. For comparison, our
study involved traces consisting of over 800 million TCP seg-
ments generated by a user population of approximately 35,000
and representing the transfer of some 55 million web objects.
Moreover, we have developed a capability for nearly real-time
analysis of our data (the first draft of this paper was completed
within a month of collecting the last traces).

We are aware of at least five projects involving the analysis of
large-scale packet-level traces containing web traffic. None of
these projects have reported on any analysis of the traces to
extract information complete enough to create traffic generat-
ing models or characterize user browsing behavior. Gribble and
Brewer [19] focused their study on factors that would be of use
to web cache designers (locality, cache-control headers, etc.)
but they also reported some data on request interarrival times
and mean sizes for HTML, GIF, and JPEG object types.
Balakrishnan, et al. [2], were concerned with issues related to
improving TCP performance such as TCP loss recovery, ACK
compression, receiver bottlenecks, and congestion control for
multiple parallel connections. Cleveland, et al. [10] created a
statistical model for generating TCP connection start times
from web clients using a notion of connection-rate superposi-
tion but they did not model other TCP connection characteris-
tics or web browsing behavior. Researchers at the University
of Washington collected large-scale traces that were used in two
studies of web proxy caching [32, 33]. Feldman [17] summa-
rizes the results of over three years of large-scale trace-
gathering projects using PacketScope monitors (with special
on-line analysis software to process HTTP headers) at several
locations in the AT&T WorldNet IP network. She reviews the
many challenges faced in reconstructing TCP connections from
individual segments and reconstructing HTTP protocol charac-
teristics from TCP connections and HTTP headers (many of
which we encountered with our own analysis tools).

Our approach is to use off-the-shelf hardware and publicly
available packet capture tools. Privacy considerations limit us
from capturing more than the TCP/IP header, however, as we
show below, with careful analysis significant and substantial
data on protocol usage and the nature, structure, and distribu-
tion of web content can be gleaned from just the TCP/IP head-
ers. One drawback to our approach is that all processing of the
traces is done off-line. This means that the length of traces is
fundamentally limited by the amount of disk space available,
the packet arrival rate, and the bytes traced per packet. As a
practical matter this limited individual traces of TCP/IP headers
to about one hour (we expect to soon add enough disk capacity
to trace over eight hour intervals). More elaborate hard-
ware/software instrumentation that supports continuous capture
and real-time analysis has been developed elsewhere [17, 19,
21, 32]. For our intended uses of the data, however, we believe
our simpler approach represents a viable alternative to instru-
mentation embedded directly in browser software or to special-
ized tracing hardware and software that analyzes entire packet
contents (including user data) and logs the results. Both of
these approaches present significant barriers to widespread use.
Given the rapidly falling prices and increasing sizes of PC hard
disks, it is quite feasible to use very large pools of storage for
intermediate processing of TCP/IP header traces.

3. The Trace Data
The data used in our study are from two sources. The two largest
trace collections were obtained by placing network monitors
on the high-speed link connecting the University of North
Carolina at Chapel Hill (UNC) campus network to the Internet
via our Internet service provider (ISP). All units of the univer-
sity including administration, academic departments, research
institutions, and a medical complex (including a hospital that
is the center of a regional health-care network) all use a single
ISP link for Internet connectivity. The user population is large
(over 35,000) and diverse in their interests and how they use
the web — including, for example, student “surfing” (and music
downloading), access to research publications and data, busi-
ness-to-consumer shopping, and business-to-business pur-
chases by the university. In addition to the thousands of on-
campus computers (the large majority of which are Intel archi-
tecture PCs running some variant of Microsoft Windows), sev-
eral units of the university operate dial-in modem pools (total
of about 250 ports) that are used by some students, faculty, and
staff for access from home. In effect, the university is a local
ISP for this population, forwarding all Internet traffic to its
upstream ISP. There are only a handful of small proxy servers
on campus so almost all the web traffic is generated directly by
browser actions. It is important, however, to remember that all
web traffic we observed represents only requests that could not
be satisfied from local browser caches.

We used network monitors to capture traces of TCP/IP headers
from all packets entering and leaving the campus network. The
traces were collected during six one-hour sampling periods each
day. The one hour sampling periods were 8:30-9:30AM, 11:00-
12:00 noon, 1:30-2:30PM, 4:00-5:00PM, 7:30-8:30PM, and
10:00-11:00PM. These periods were chosen somewhat arbitrar-
ily to produce four traces during the normal business day and
two during non-business hours when traffic volumes were still
reasonably high. One set of traces consists of all the TCP/IP
headers collected during these sampling intervals over a seven-
day period, in late September 1999. This seven-day period pro-
vided a set of six traces from each of the seven weekdays for a
total of 42 one-hour traces. This set of traces will be referred to
in this paper as “UNC-99.” The second set of 42 traces also
consists of traces taken at the same hours over a seven-day
period, in late September 2000 (referred to as “UNC-00”). This
allows us to compare results from traces gathered approxi-
mately one year apart.

When the UNC-99 traces were gathered, our campus was con-
nected to the ISP by an OC-3 (155 Mbps) full-duplex, ATM
link. This link carried all network traffic between the campus
and the “public” Internet (traffic between the campus and Inter-
net 2 sites was routed over a separate OC-3 link). We placed the
monitor on the OC-3 link to the “public” Internet. The specific
monitor used was the OC3mon developed initially at MCI for
vBNS [1] and now distributed by CAIDA (CoralReef) [34]. This
monitor was passively inserted in the link using a fiber splitter
to divert some light from the optical signal. The signal is input
to the receive port of an ATM interface card in an Intel architec-
ture PC equipped with large, high-performance disks. Because
the link was full-duplex (two fibers), the monitor required two
ATM interface cards, each receiving the signal for one of the
directions of transmission (i.e., inbound or outbound with re-
spect to the campus). The OC3mon software ran on FreeBSD
(version 2.2.8) and produced traces of timestamped entries giv-
ing the contents of ATM cells carrying the TCP/IP headers. The
trace entries for each interface were filtered into separate traces
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for the inbound and outbound traffic. We also converted the
OC3mon trace into the format used by tcpdump using a locally-
modified version of a tool, mon2dump, originally developed at
MCI.

A year later when the UNC-00 traces were taken, the ISP link
had been replaced by an OC-12 (622 Mpbs) path based on
Cisco-proprietary DPT technology instead of ATM. Thus we
could not use the same monitoring tool we used for the 1999
traces. Fortunately, all the traffic between the campus and the
Internet traversed a single full-duplex gigabit Ethernet link
from the campus aggregation switch to the edge router with the
DPT interface. In this configuration, both “public” Internet and
Internet 2 traffic are co-mingled on the one Ethernet link (the
only traffic on this link is traffic to and from the ISP edge
router). We again placed a monitor on this gigabit Ethernet by
passively inserting a fiber splitter to divert some light to the
receive port of a gigabit Ethernet network interface card (NIC)
set in “promiscuous” mode. As the link was still full-duplex,
the monitor required two NICs, and each monitored one direc-
tion of transmission. The NICs were hosted in a PC running
FreeBSD version 3.2. An instance of the tcpdump program was
run on each of the interfaces to collect a trace of TCP/IP packet
headers. Buffer space of 3 MB was allocated to the bpf devices
used by tcpdump to buffer transient overloads in packet arri-
vals. The tcpdump program reports statistics on the number of
packets dropped. We found that in many traces no packets were
dropped and that the maximum number of drops in any trace was
less than 0.02% (average of 0.004% drops over all traces).3

In this paper we use data only from the traces of packets flow-
ing into the campus network from the ISP (“inbound” packets).
Summary statistics for the inbound packets in the two sets of
UNC traces is given in Table 1. The volume of Internet data
increased significantly between 1999 and 2000. Some part of
this can be attributed to the fact that the 2000 data includes
both “public” Internet and Internet 2 traffic. However, most of
it is simply growth of Internet usage by the university popula-
tion. While the number of HTTP bytes flowing into the campus
doubled between 1999 and 2000, web traffic actually declined
as a percentage of all TCP traffic. This is attributed to the sud-
den popularity of the Napster application for downloading
audio files [36].

As a “sanity check” of our data, two considerably smaller sets
of traces from the repository of traces at NLANR [35] were used
for comparison. This allowed us to both debug our measurement
methodology and verify that other university campuses see
similar patterns of web traffic. The NLANR traces were gathered
using the OC3mon/Coral software described above. We selected
from the NLANR repository two sets of traces collected at ap-
proximately the same time periods in 1999 and 2000 as our
UNC traces. Within these time periods, we selected traces from
sites that appeared to have relatively high volumes of traffic
during the sampling times used by NLANR. The set of traces we
refer to as “NLANR-99” is composed of eight traces from each
of two sites (Merit-University of Michigan, and the San Diego
Supercomputer Center “commodity connection”) all taken on
September 19, 1999. Our “NLANR-00” set also consists of
eight traces from the same sites. These traces were all taken on
September 28, 2000. Summary statistics for the NLANR traces
are also given in Table 1.

                                                                        
3 The OC3mon does not explicitly report dropped packets but halts with
an error if the trace overruns the disk. This did not occur in any of our
traces.

4. Analysis of TCP Connections
Because we have only traces of TCP/IP headers, all the statis-
tics we report here have been derived from analysis of these
headers knowing their formats and the dynamic behaviors of
the TCP and HTTP protocols. The primary information used
from the TCP/IP headers was the IP source and destination ad-
dresses, the protocol number (to identify TCP segments), the
source and destination ports, the TCP flags (to detect SYN, FIN,
and Reset), the data sequence number, and the acknowledgement
(ACK) number.

The OC3mon tool used to gather the UNC-99 and all the
NLANR traces timestamps the arrival of each trace entry using a
clock local to the ATM interface card that receives the data.
Because the trace entries from each direction of data flow on the
full-duplex OC-3 link are timestamped with a different clock, i t
is difficult to create a merged bi-directional trace in the correct
order. Even though the Coral software attempts to initialize the
clocks on both interface cards to the same value, there is usu-
ally a random initial offset between the clocks and the clocks
may drift at different rates. Our attempts to produce merged bi-
directional traces by sorting on timestamps resulted in a large
number of TCP connections with obviously incorrect orderings
(e.g., SYN+ACK before SYN).4 Fortunately, it is not necessary
to merge (or even use) both directions of data flow in order to
reconstruct important elements of the internal dynamics within
a TCP connection and infer parts of the HTTP protocol.

Consider a trace consisting only of TCP/IP packet headers cap-
tured on the interface receiving IP packets arriving on the in-
bound path (to the university from its ISP). We first filter this
trace to pull out only those IP packets where the protocol field
in the IP header designates TCP and the source port field in the
TCP header contains the value 80 (the normal HTTP server
port). This produces a trace of TCP/IP packet headers that were
sent from Web servers somewhere in the Internet to Web cli-
ents (browsers) located at the university. This filtered trace is
then sorted on three keys in the following order: source IP ad-
dress and port, destination IP address and port, and timestamp.
This produces a time ordered trace of TCP segments within each
TCP connection (actually within unique TCP connection ad-

                                                                        
4 Later versions of the Coral software have improved the bounds on
clock synchronization.

Table 1: Summary data for the UNC and NLANR traces
(all counts in thousands).

UNC-99 UNC-00 NLANR-99 NLANR-00

TCP Packets 525,258 1,872,964 16,919 18,656
% TCP Packets 85.08% 90.77% 84.66% 90.13%

UDP Packets 89,759 180,482 2,681 1,596
% UDP Packets 14.54% 8.75% 13.42% 7.71%

HTTP Packets 232,245 602,183 9,263 7,617
% HTTP Packets 37.62% 29.18% 46.35% 36.80%

Total Packets 617,333 2,063,351 19,985 20,699

TCP Bytes 211,610,632 721,866,693 8,374,506 9,744,043
% TCP Bytes 86.15% 89.84% 93.08% 95.85%

UDP Bytes 33,760,062 80,921,395 480,644 385,298
% UDP Bytes 13.74% 10.07% 5.34% 3.79%

HTTP Bytes 138,050,697 278,484,679 4,198,123 3,351,340
%HTTP Bytes 56.20% 34.66% 46.66% 32.97%

Total Bytes 245,636,674 803,493,236 8,996,799 10,165,498



5

dress 4-tuples; port reuse occasionally produces multiple TCP
connections using the same 4-tuple within a trace). The HTTP
protocol is asymmetric — the client always initiates the con-
nection (sends the TCP initial SYN segment). The server nor-
mally continues the connection establishment protocol by
responding with a SYN+ACK segment. This SYN+ACK seg-
ment should appear in our trace and its timestamp is used for the
beginning time of a TCP connection. Similarly the connection
is considered to end when a FIN or Reset segment from the
server is found in the trace.

For the HTTP protocol, we are interested in the exchanges of
data between the browser and server that occur within the TCP
connection. Specifically, we want to identify the first and last
bytes of browser requests and the first and last byte of server
responses. For those cases where the TCP connection is used
for more than one request/response pair (when both the browser
and server support persistent connections), we need to identify
the beginning and end of requests and responses for multiple
exchanges between the browser and server. Fortunately the TCP
protocol allows us to infer this information from examination
of only the TCP segments flowing from the server to the
browser. Consider the common case where the first TCP seg-
ments that flow on an established TCP connection are the
HTTP-request protocol elements sent by the browser. As the
TCP protocol stack on the server receives the segment(s) com-
prising the request, it will send TCP acknowledgment sequence
numbers (ACKs) indicating the in-order byte sequence it has
received. These may be sent in segments containing only an
ACK or in segments containing an ACK along with HTTP-
response protocol elements and perhaps object data. The ACK
may be sent immediately, delayed by up to 200 milliseconds,
or be sent on the next outbound data segment on that connec-
tion. The important observations are that the ACK value will
advance by an amount equal to the size of the request protocol
elements and that all of the request message will be ACKed no
later than the first segment carrying any data for the corre-
sponding response. The size of the response is indicated by the
amount the data sequence number advances in segments from
the server. Note that this method of computing the response
size means that it is the sum of the HTTP headers and the size of
the referenced object. Since the HTTP response headers are non-
trivial in size (around 200-300 bytes is typical), the reported
response sizes are larger than actual object sizes.

In the case of persistent connections with more than one re-
quest/response exchange, we will see an alternating pattern of
advancing ACK values followed by advancing data sequence
numbers from the server. Pipelining could complicate the iden-
tification of request/response exchanges in persistent connec-
tions and is discussed in Section 8.

Fundamental to all of this is the observation that a server
should not be sending data in response to a request unless that
data is accompanied or preceded by an advance in the ACK se-
quence covering receipt of the request segments. Similarly, any
new data segment sent by a server that follows, or is accompa-
nied by, an advance in the ACK sequence number is assumed to
be a response to the request that caused the ACK sequence to
advance. Put another way, response segments (a sequence num-
ber advance) mark the end of a request and ACK advances mark
the end of a response. Of course other events such as FIN or
Reset can mark ends also. A request’s start time is the time-
stamp on the trace entry containing the first advance in the
ACK field following the connection establishment or a se-
quence of response segments. A response’s start time is the

timestamp on the trace entry containing the first advance in the
sequence number field following a sequence of request seg-
ments. A response’s ending time is the timestamp on the trace
entry that last advanced the data sequence number before the
response ended (a new request starts, a FIN is sent, etc.). Simi-
larly, a request is considered to end at the timestamp on the last
trace entry of the request.

All of this would be quite straightforward if it were not for all
the ways real TCP connections deviate from such well-behaved
traces.5 Retransmissions and segment reordering in the net-
work disturb this use of advancing ACK/data sequence numbers
to mark requests and responses. In traces of TCP segments, the
data sequence numbers may not be monotonically increasing.
In some cases, such as re-orderings or retransmissions of data-
only segments in a response, this presents no problem since
only the highest sequence number seen is used. The length of a
response in a persistent connection can be computed as the
difference between the (largest) sequence at the end of one re-
sponse and the (largest) sequence at the end of the subsequent
response. ACKs should be monotonically increasing so the
length of a request in a persistent connection can be computed
as the difference between the ACK value marking the end of one
request and the ACK value marking the end of the next request.
Unfortunately, out-of-order segments can cause ACKs to appear
to “go backward.” For segments without data (ACK only), sim-
ply ignoring the “backward” ACK is correct. Reordering of
segments with changes in both data sequence numbers and ACK
values presents problems since boundaries between requests
and responses may be missed which can result in overstating or
understating request and response sizes. Issues related to analy-
sis of TCP segments are discussed in Section 8.

5. User and Web Content Characterizations
Our traces do not include any part of the user data carried in TCP
segments and hence we do not have access to any of the HTTP
protocol headers. We must, therefore, use heuristics to infer
characteristics of user and browser behavior from the analysis
of TCP connections. The first step in this process is to sort the
summary descriptions of the TCP connections in each of the
individual traces as produced by the analysis program described
above. These summary traces are sorted on two keys; first by
unique client IP addresses (the unique IP destination addresses
found in a trace filtered for source port 80) and then by time.
This creates a time-sorted summary of the TCP connection ac-
tivity between each individual client and the server(s) that cli-
ent used during the one-hour trace. The time-sorted summary of
TCP connections contains the connection start time, the client
IP address and port number, the server IP address, the beginning
time and size in bytes of each request, the beginning and end-
ing times of each response along with its size, and the ending
time of the connection. We then use this time-ordered informa-
tion to infer certain characteristics of activity by the user or the
browser.

We assume that in the vast majority of cases a client IP address
identifies a single human user running one or more browser
instances on a personal computer or workstation. Although we
know that there are times when multiple users concurrently run
browsers on a shared compute server (single client IP address),

                                                                        
5 We describe here only the “expected” exceptional behaviors related
to loss, retransmissions, and reordering; the truly bizarre sequences that
our analysis tools unearthed are fortunately so rare that completely dis-
carding those connections does not effect the results.
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we believe this to be rare on our campus where there is basi-
cally one computer for each Internet user. Furthermore, even
though the vast majority of computers on our campus have IP
addresses assigned by DHCP, we believe the reuse of a given IP
address on different machines during a single one hour trace is
rare because leases last eight hours or more. Further, many of
the larger DHCP servers maintain a fixed mapping of IP address
assignments to Ethernet MAC addresses.

Using heuristics similar to those developed originally by Mah
[20] and Barford and Crovella [3], we attempted to identify
points in each client’s activity that are likely to mark a request
for a new (or refreshed) page. We use the term “page” as a con-
venient label for a web object referenced in a “top-level” sense,
i.e., it is not referenced through interpreting references found
internal to some other object (e.g., embedded references in
HTML). We also use the term “object” synonymously with a
response from a web server. Server responses that are error
reports (e.g., “404 – Not found”) are counted as objects (or
pages) in this discussion. We assume that page references nor-
mally occur after some period of idle or “think” time at the cli-
ent, e.g., the time a user spends digesting the contents of one
browser display before selecting (or entering) a link to a new
page. This same model of a page request following an idle pe-
riod also captures the behavior of periodically refreshed pages.
User actions that complicate this simple view of behaviors
such as clicking the browser “stop” or “reload” buttons while a
page is loading or a “quick click” on a link before the page
loads completely, are discussed in Section 8.

We define an idle period heuristically by examining the time-
ordered set of TCP connections used by a client. We identify
periods in which the client either has no established TCP con-
nections or where no established connection has an active re-
quest/response exchange in progress. We consider a re-
quest/response exchange to be active from time the request
begins until the corresponding response ends. If any period
with no activity persists for longer than a time threshold, it is
classified as an idle period. We found empirically that a thresh-
old of 1 second works well for distinguishing idle periods (as
did Mah and Barford and Crovella). It is important to note that
this approach works only on traces for which we can be rea-
sonably certain that all the TCP connections for a given
browser appear in the traces. Since the NLANR traces have no
information about where clients are located relative to the
monitoring point, we perform this analysis only on the UNC
traces where we know the clients are located on (or dialed into)
the campus network and the servers are located somewhere in
the Internet. Figure 1 shows the distribution of idle periods
greater than one second observed in the UNC data. There are no
appreciable differences between the 1999 and 2000 results;
60% of idle periods are between 1 and 10 seconds and approxi-
mately 90% of idle periods are less than 60 seconds.

We consider the initial request/response exchange following an
idle period to be for the “top-level” page object (typically
HTML) and all the subsequent request/response exchanges be-
fore the next idle period to be for the “embedded” object refer-
ences (if any) within the initial page object. This classification
heuristic implies that responses consisting of error status are
treated as page objects. Note that top-level or embedded objects
that can be used from the browser’s local cache are not visible
in our traces and Conditional-GET request/response exchanges
for cache validation found in the traces are treated as normal
page or embedded object references (see Section 8). The server
IP address involved in the request/response exchange for the

top-level page object is considered to be the primary server for
the page. All server IP addresses not equal to the primary IP
address involved in subsequent request/response exchanges for
objects related to that page are considered to be non-primary
servers. Embedded objects may come from either the primary
server or from non-primary servers.

6. TCP connection usage
We have implemented a suite of tools for processing tcpdump
formatted traces that produce statistical data to characterize TCP
connection behaviors. We first present results concerning the
usage of persistent and non-persistent connections. Our classi-
fication of a TCP connection used in HTTP as persistent reflects
actual usage characteristics, not whether a browser and server
have used the HTTP protocol to establish a persistent connec-
tion. Our definition is thus of effective persistence, that is,
whether or not a TCP connection is actually used for multiple
request/response exchanges. A TCP connection is considered
persistent if it is actually used for two or more request/response
exchanges. All TCP connections used for one request/response
exchange are considered non-persistent. This means that TCP
connections in which the browser and server have enabled a
persistent connection but make only one request/response ex-
change are considered non-persistent. Partial connections
(normally at the beginning and end of traces) and those termi-
nated without any exchanges are not classified.

Table 2 gives summary information about how TCP connec-
tions are used in the web. While 15% or fewer of all TCP con-
nections are effectively persistent, they are now used for 40-
50% of all object references representing about 40% of all
bytes transferred. This means that persistent connections now
have a significant influence on the dynamics of TCP connec-
tions for the web. Put another way, the number of TCP connec-
tions required for web traffic is now approximately 50% lower
than it would have been with the original HTTP protocol. Fig-
ure 2 shows the distributions of the number of request/response
exchanges for persistent connections. Over 60% of persistent
connections are used for three or more request/response ex-
changes and 10% carry more than ten.

Figure 3 shows the distribution of unique TCP connections used
in requesting all the objects for a page. Around 55% of all
pages are fetched using two or more unique TCP connections
(which may be any mix of persistent and non-persistent con-
nections depending on the capabilities of the servers and
browsers). Around 50% of all pages required 2-10 unique TCP
connections. The number of unique TCP connections used for a
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Figure 1: Cumulative idle (“think”) time distribution.
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page is a result of complex factors including the number of
objects in the page, the number of servers holding the objects
for the page, the number of concurrent TCP connections the
browser opens to each server, whether the client and server
support persistent connections, and how aggressive they are
about keeping persistent connections active over multiple
pages. Figure 4 gives the distribution of unique server IP ad-
dresses per page. While about 65% of all pages can be obtained
from a single server IP address, about 35% require connections
to 2-10 different IP addresses (and rarely as many as 100 IP
addresses). We believe these results are a reflection of the ways
page content is obtained dynamically from a number of sources
including banner ads from agency sites and content that has
been explicitly distributed to content servers (e.g., Akamai).

7. Request and Response Data Sizes
We now consider the sizes of individual request and response
elements of the HTTP protocol as identified by our analysis
tools. Figure 5 shows the distribution of request sizes. Request
sizes are defined in our analysis as the number of bytes sent by
the browser in a single request/response exchange as explained
above. As expected, over 90% of the requests are between 100
and 1,000 bytes in size. The most surprising feature of this
distribution, however, is the tail which indicates the presence
of some very large requests, especially in the 2000 traces.
(Note that the CCDF plot is approximately linear over three
orders of magnitude in request size on log scales which is con-
sistent with a heavy-tailed distribution.) We have looked more
closely at how these very large requests arise (which are larger
than one would expect from submitting forms with web brows-
ers). An interesting example we found was the use of “web
email,” specifically users of Yahoo email, that send email mes-
sages with large attachments. In one trace, a user sent email
with an approximately 500K attachment producing a request of
that size but eliciting a response from the Yahoo server of only
2.2K bytes. We speculate that as browsers become more widely
used as interfaces for web-enabled applications such as email,
large request elements will become more significant.

The requests over 1,000 bytes in size already represent a non-
trivial contribution to the total bytes transmitted as requests.
Figures 6 and 7 give two views of the cumulative percentage of
total bytes in requests as a function of request size. These plots
clearly show the growing contribution of large requests to the

total volume of request bytes in the UNC and NLANR traces
(e.g., about 20% of the request bytes come from requests larger
than 1,000 bytes in the UNC-00 traces). There has been a no-
ticeable change from 1999 to 2000 (5% of the bytes were in
requests larger than 10,000 bytes compared to 3% in 1999).

Response sizes are defined in our analysis as the number of
bytes sent by the server in a single request/response exchange
as explained above. Figures 8 and 9 give two views of the dis-
tribution of response sizes. Overall we find that about 85% of
the responses observed were 10,000 bytes or less. These dis-

Table 2: Summary data for TCP connections used in the web
(all counts in thousands).

     UNC     NLANR
          99           00       99      00

Top-level Objects 3,722 6,586 N/A N/A
Embedded Objects 14,799 30,836 N/A N/A

% Embedded Objects 79.90% 82.40% N/A N/A
Non-Persistent Connections 9,620 17,672 261 187

Persistent Connections 1,551 3,152 34 29
% Persistent Connections 13.89% 15.14% 11.60% 13.77%
Unclassified Connections 577 1,513 58 64

% Unclassified 4.91% 6.78% 16.51% 22.79%
Objects on Non-Persistent 9,620 17,672 261 187

Objects on Persistent 8,280 17,497 153 140
% Objects on Persistent 46.26% 49.75% 36.97% 42.83%
Bytes on Non-Persistent 66,522,598124,665,042 1,490,813 991,967

Bytes on Persistent 45,471,488 84,205,017 680,123 550,485
% Bytes on Persistent 40.60% 40.41% 31.33% 35.69%
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Figure 2: Cumulative distribution of request/ response
exchanges per persistent connection.
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Figure 3: Cumulative distribution of unique TCP connec-
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tributions also indicate some potentially interesting shifts
between 1999 and 2000 in the proportions of responses in the
range of 200 bytes to 10,000 bytes. In both the UNC and
NLANR data, we see some shift to a greater proportion of
smaller response objects. For example, in the UNC-99 traces
about 47% of responses were 1000 bytes or smaller while in
the 2000 traces, about 53% of the responses were 1000 bytes
or less. Data from future years will be needed before determin-
ing if there is a definite shift in the relative proportions of
object sizes in the 200-10,000 byte range.

For response sizes greater than 10,000 bytes, we found that the
very largest objects increased significantly in size. In the UNC
traces the CCDF of response sizes is linear over four orders of
magnitude on log scales and is consistent with earlier observa-
tions of heavy-tailed distributions [3, 5]. This probably re-
flects the increasing use of HTTP instead of FTP to distribute
large files.6 The sizes of the very largest responses in the UNC
traces are bigger in 2000 by a factor of 4-7 while there appears
to be no change for the NLANR traces. The sizes in the NLANR
traces are smaller by almost two orders of magnitude. We be-
lieve that much of this difference in the NLANR data is not due
to real changes in the sizes of responses but is an artifact of the
tracing environment. This illustrates an important methodo-
logical point — the ability to collect data on very large re-
sponse objects is influenced by the trace interval and link
speeds. In the case of the NLANR traces, the nominal trace in-
terval of 90 seconds is just too short to capture large responses
entirely. For the UNC traces, it is likely that tracing for one
hour on a gigabit-speed link results in a greater chance of ob-
serving larger responses than tracing for one hour on an OC-3
link. It will be interesting to see if the sizes of the very largest
responses increase when we trace for eight hours or more on
gigabit-speed links.

We found significant differences in the distributions of re-
sponse sizes for top-level and embedded objects. Figures 10
                                                                        
6 One specific example is CD images for software distribution (e.g.,
Linux releases)
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Figure 5: Complementary cumulative distribution of
request data sizes greater than 100 bytes.
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Figure 6: Cumulative distribution of request bytes transmitted
weighted by request size less than 10,000 bytes.
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Figure 7: Complementary cumulative distribution of request
bytes transmitted, weighted by request size >1,000 bytes.
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Figure 8: Cumulative distribution of response data sizes
(100–100,000 bytes).
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Figure 9: Complementary cumulative distribution of response
data sizes greater than 10,000 bytes.
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and 11 shows the overall distributions of top-level and embed-
ded object sizes from the UNC traces. We see clear indications
that top-level objects tend to be larger than embedded objects.
For example, about 30% of top-level objects are larger than
10,000 bytes while only 10% of embedded objects are. About
50% of top-level objects are smaller than 2,000 bytes while
70% of embedded objects are smaller than 2,000 bytes. This
observation is consistent with the number of complex web
pages we all see that are composed with embedded objects for
icons or advertisements. Figure 10 shows indications of a year-
to-year trend toward larger proportions of smaller objects in
the range of sizes between 100 and 10,000 bytes.

While we have found that 85% of all responses are 10,000
bytes or less, these responses account for only about 20% of
the bytes actually transferred from servers to clients, and re-
sponses larger than 100,000 bytes represent over 35% of the
bytes. Figures 12, 13, and 14 give different views of the cumu-
lative percentage of total bytes in responses as a function of
response size. Figure 12 gives the overall contribution of dif-
ferent response sizes to the total bytes returned by servers. The
NLANR traces are quite similar to the UNC traces except above
100,000 bytes where the truncated trace intervals limit the
observation of large responses. There is a clear influence of the
larger response sizes in the 2000 UNC traces when compared to
1999. In Figure 13 we see evidence that larger objects account
for a higher proportion of the total bytes transmitted on non-
persistent connections. Figure 14 confirms our observation
that top-level objects are larger than embedded objects and also
indicates embedded objects larger than 10,000 bytes may be

increasing in size year-to-year. For example, only 10% of the
total bytes from top-level objects are from objects smaller than
10,000 bytes while about 30% of the bytes from embedded
objects are from those smaller than 10,000 bytes.

8. Limitations of the Methodology
Our methodology is based on making inferences from the lim-
ited information available in the TCP/IP protocol header for
one direction of a TCP connection (from off-campus server to
on-campus browser in our case). There are a number of inherent
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Figure 10: Cumulative distribution of response data sizes for
top-level and embedded object sizes (100–100,000 bytes).
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Figure 11: Cumulative distribution of response data sizes for
top-level and embedded object sizes greater than 10,000 bytes.
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Figure 12: Cumulative distribution of response bytes
transmitted weighted by response size.
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limitations and uncertainties that arise when making these
inferences.7 However, the degree of uncertainty in the results is
not uniform. For characterizations of TCP connection-level
properties such as the number of connections, the sizes and
numbers of request/response exchanges, etc., the methodology
should produce very good results. For other characterizations of
the Web, especially those that depend on classifying ex-
changes as belonging to top-level or embedded references,
there is greater uncertainty. We have identified four classes of
issues that contribute to uncertainty in the results: pipelined
exchanges, user/browser interactions, caches, and TCP seg-
ment processing. Each of these is discussed separately below.

Pipelining
Pipelining introduces the possibility of errors in determining
the number and lengths of request/response exchanges in TCP
connections. In the simple case where a server TCP stack re-
ceived all the request segments generated in a pipeline before i t
sent the first response segment, the entire pipeline of requests
would be treated as one (larger) request. Similarly, if a server
sent all the response segments for a pipelined response before
it received segments for a new client request, the entire pipeline
of responses would be treated as one (larger) response. This
would inflate the sizes of requests and responses and deflate the
number of exchanges per connection. In more complicated
cases where a pipeline of requests overlapped with (one or
more) responses or vice versa, the analysis tool would infer the
sizes of individual requests and responses incorrectly.

A somewhat dated (1998) study found that pipelining was not
implemented in popular browsers [31]. Our observations show
that browsers still do not appear to employ pipelining. This
was determined through two separate investigations of browser
behavior using the current (late 2000) releases of the two
browsers that dominate usage on our campus: Netscape Naviga-
tor (version 4.7) and Microsoft Internet Explorer (version 5.5).
For the first study we configured an Apache web server to sup-
port persistent connections and pipelining. A moderately
complex web page consisting of a base HTML file with 20 em-
bedded references to objects of various sizes was placed on the
server. Using an HTTP server test program, we generated
known pipelined requests for the elements of this page and
verified that the server did in fact implement persistent connec-
tions and pipelining (verified using a tcpdump of entire packets
flowing in both directions). We then requested the test page
with both Navigator and IE. Both browsers opened multiple
persistent connections (4 by Navigator, 2 by IE) but neither
constructed any pipelined requests (verified by examining the
resulting tcpdump trace).

To confirm this behavior in more realistic situations with a
variety of page structures and server implementations, we did a
second study. For this study we requested the site home page
and a page one link off the home page from a web server at each
of the top-twenty web properties as reported by MediaMetrix
[37]. We made these requests with both Navigator and IE and
recorded tcpdumps of entire packets flowing in both directions.
We then analyzed the traces using the captured HTTP headers
and saw that no instances of pipelining could be found even
though most pages had numerous embedded objects and at most
sites one or more servers supported persistent connections. We
                                                                        
7 Using TCP/IP headers from both directions of flow in a TCP connec-
tion would not substantially improve these uncertainties because they
arise from a lack of information (e.g. HTTP headers, cache contents, or
user actions) not available at this level.

also processed the one-way, TCP/IP headers-only subset of
these traces with our analysis tools to reconfirm that they cor-
rectly identified all request/response exchanges and produced
correct results for request and response sizes. Based on these
two investigations, we believe it is unlikely that pipelining
has any influence on the results reported here.

User/Browser Interactions
User actions at the browser level can effectively interrupt the
request/response exchanges for fetching page objects. These
interrupting actions include clicking the browser “stop” or
“reload” buttons while a page is loading, or a “quick click” on a
link displayed before the page loads completely. The Windows
versions of Navigator and IE respond to these actions with a
close(abort) operation for its TCP connections (thus sending a
segment with the Reset flag set to the server). When the user
does either a “reload” or “quick click” while a page is loading,
the browser immediately begins the process of loading a new
page. As a result, our page-detection heuristic (based on an idle
interval greater than one second) misidentifies the two pages
involved in one of these interrupting actions as only one page.
The result is that some (presumably larger) top-level objects
are counted as embedded objects in the distributions of object
sizes by type, and the distributions of unique TCP connections
per page and unique server IP addresses visited per page may be
somewhat skewed toward larger values. For uses of the “stop”
button, however, the latter two distributions may be somewhat
skewed toward smaller values since object references are artifi-
cially curtailed. Analysis of Reset segments in the TCP/IP
headers from our client-to-server traces could potentially quan-
tify the frequency of these user actions and provide a better
characterization of the effect on these distributions.

Another user-related source of uncertainty is the somewhat
common case of a user having two or more browser windows
open at the same time. If the user happens to invoke page ac-
tivity concurrently in multiple windows (this is expected to be
rare), our methodology will not correctly identify top-level
versus embedded objects and associate request/response ex-
changes with a page. This same source of uncertainty applies to
cases where multiple users are running browsers concurrently
on a compute server (multiple users per IP address).

Caches
Our traces contain information only about pages or embedded
objects that could not be satisfied from local browser cache. If
any components of a page are in the cache, the inferences de-
rived from the trace have uncertainties that depend on how the
browser implements cache validation. For example, if objects
are in the cache, our trace may contain HTTP Conditional-GET
request/response exchanges for those components. The sizes of
these conditional-GET exchanges somewhat obscure actual
sizes of objects just as response headers do. (We do, however,
produce an accurate measurement of the bytes actually trans-
ferred on the TCP connection.)

If the cache contains an expiration or MAX_AGE value for an
object (or implements some form of adaptive time-to-live),
there may be no activity in the trace for many browser refer-
ences to objects. This can cause incorrect inferences for identi-
fying the top-level page (e.g., if the top-level page is taken
from the cache but some embedded object is not, the traced
fetch of the embedded object may be inferred to be for a top-
level object). While browser caches have no effect on our re-
sults for actual TCP connection-level characterizations, they do
introduce uncertainty in page-level characterizations that de-
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pend on identifying the top-level page versus embedded objects
(e.g., distributions of sizes for top-level objects may contain
more small objects than they should).

Proxy caches are not in significant use on our campus and do
not contribute materially to the uncertainties described for
browser caches. Traces from other locations where proxy
caches are deployed would be very interesting for comparison
purposes.

TCP Segment Processing
As we mentioned in Section 4, retransmissions and segment
reordering in the network do not cause problems for the analy-
sis as long as the segments do not contain changes in both data
sequence numbers and ACK values. For persistent connections,
out-of-order segments carrying both response data and new
ACK values can lead to incorrect results. For example, consider
two consecutive segments that have advances in both data se-
quence numbers and ACK values. If these are reordered in the
network, the analysis tool, ignoring the smaller values that
arrive late, will potentially miss a request/response exchange
and report larger values of sizes. Each case of such segment
reordering that might lead to erroneous request or response
lengths was recorded for off-line investigation. In the UNC
traces, we found about 4,900 connections with segment reor-
dering where the analysis tool could not make a correct
choice.8 We examined a random sample of several hundred of
these cases and found that less than half were analyzed incor-
rectly. Thus we believe that a very small percentage (less than
0.005%) of incorrect size values are included in the data and
have no appreciable effect on the results.

A final uncertainty arises from the fact that our traces cover
specific intervals of time. This means that at the beginnings
and ends of traces we find incomplete TCP connections (5-7%
of the total connections in the UNC traces9). We have excluded
from our analysis any request or response size that was made
ambiguous by missing the beginning or end of the TCP con-
nection while retaining data about other unambiguous re-
quest/response exchanges in the same connection. We also
excluded incomplete connections from results concerning per-
sistent versus non-persistent connections. We made no at-
tempt, however, to exclude other connections related to the
incomplete connections (e.g., those within the same top-level
page). This probably has a small effect on results for the num-
ber of exchanges in persistent connections or in characteriza-
tions that depend on identifying top-level or embedded objects.

To summarize, in the absence of pipelining, the methodology
produces accurate results for TCP connection-level characteriza-
tions. For making inferences about the web that rely on classi-
fying request/response exchanges as belonging to top-level or
embedded objects, there is greater uncertainty (arising mostly
from caching and user/browser interactions). Additional study
is needed to evaluate the impact of these effects.

9. Summary and Conclusions
By any measure, web traffic is the single largest identifiable
consumer of bandwidth on the Internet. A contemporaneous
                                                                        
8 The analysis tools were designed for a simple one-pass processing of
segments with no internal stack to save segments for analysis of reor-
dering. A more sophisticated stack-based program could deal with these
situations.
9 We found about 20% of the connections in the NLANR traces to be
incomplete because of the short (90 second) trace durations.

characterization of web traffic is therefore important for driv-
ing network simulations and live testing of network compo-
nents such as congestion control mechanisms. While previous
models of web traffic have been presented in the literature, it is
important to continually re-populate these models with new
data and update the models to account for the evolution of pro-
tocols and their use. We demonstrate the use of a lightweight
measurement methodology for gathering these data based on
capturing only TCP packet headers flowing from servers to
clients. The method balances the tradeoff between ensuring the
privacy of users and gathering sufficient data to capture the
HTTP protocol dynamics. We have developed a sufficient set of
tools for processing multi-gigabyte tcpdump files to create
distributions of the major structural elements of an HTTP con-
nection. We have conducted two measurement studies of HTTP
traffic arriving at the ingress router on the UNC campus during
September and October in 1999 and 2000. We also compare our
traces to set of similar (but smaller) traces acquired by NLANR
during the same periods as our traces.

From the analysis of our trace data, and the NLANR data, we
draw a number of conclusions about the evolving nature of web
traffic, the use of the web, the structure of web pages and the
organization of web servers that provide their content, and the
use of packet tracing as a method of understanding the dynam-
ics of web traffic. From a methodology standpoint, we conclude
that a substantial and detailed analysis of HTTP re-
quest/response exchanges is possible given only the TCP/IP
headers of packets sent from servers to clients. Given only a
unidirectional trace, one can discern transport protocol phe-
nomena and the effects of higher-level protocol usage such as
the use of persistent HTTP connections, as well as application-
level phenomena such as the number of embedded objects per
web page and the distribution of servers delivering this con-
tent. We believe that future traces of web traffic must be consid-
erably longer (on the order of hours) in order to fully capture
the tail of the distribution for measures such as the size of re-
sponses from servers to clients.

From a protocol usage standpoint, we observed that 15% of all
the TCP connections carrying HTTP request/response ex-
changes are persistent in the sense that they actually carry
more than one request/response exchange. These persistent
connections deliver 40-50% of all the web objects requested
and these objects account for approximately 40% of all the
bytes transferred. Thus, although the fraction of connections
that are persistent is small, their use represents a 50% reduction
in the total number of TCP connections required to deliver web
content (compared to a similar environment in which persis-
tent connections are not used).

From an analysis of HTTP responses we see that 65% of all web
pages are constructed entirely by responses from a single
server while 35% of the pages requested receive content from
two or more servers. Close to 70% of the consecutive top-level
page references go to an IP address that is different from the
address used for the previous top-level page reference possibly
representing the impact of large organizations managing their
web sites with a “server farm” for load balancing [29]. We also
see an increase in the number of embedded objects per web page
but a decrease in frequently occurring sizes. This is possibly
due to the pervasive use of “banner adds” and icons to decorate
pages [29]. Overall the number of bytes transferred to deliver
embedded objects is increasing.
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Overall we see a slight decrease in the frequently occurring
sizes of response objects but a marked increase in the size of
the largest objects transferred. The largest 15% of object sizes
account for 80% of the bytes transferred from servers. From an
analysis of HTTP requests we see novel uses of web requests to
implement applications such as “web email” that result in a
shift in the distribution of request sizes because files are being
transferred (e.g., email attachments) in the context of an HTTP
request. This also gives rise to HTTP request/response ex-
changes in which the request is orders of magnitude larger than
the corresponding response.

10. References
[1] J. Apisdorf, K Claffy, K. Thompson, and R. Wilder. OC3mon:

Flexible, Affordable, High-Performance Statistics Collection, Pro-
ceedings of INET ’97, June 1997. (http://www.isoc.org/isoc/whatis
/conferences/inet/97/proceedings/F1/F1_2.HTM)

[2] H. Balakrishnan, M. Stemm, S. Seshan, V. Padmanabhan, R. H.
Katz, TCP Behavior of a Busy Internet Server: Analysis and Solu-
tions, Proceedings of IEEE INFOCOMM ’98, March 1998, pp. 252-
262.

[3] P. Barford and M. E. Crovella, Generating Representative Web
Workloads for Network and Server Performance Evaluation, Pro-
ceedings of ACM SIGMETRICS ‘98, 1998, pp. 151-160.

[4] P. Barford and M. E. Crovella, A Performance Evaluation of Hy-
perText Transfer Protocols, Proceedings of ACM SIGMETRICS
‘99, May 1999, pp. 188-197.

[5] P. Barford, A. Bestavros, A. Bradley, and M. E. Crovella, Changes
in Web Client Access Patterns: Characteristics and Caching Impli-
cations, World Wide Web, Special Issue on Characterization and
Performance Evaluation, Vol. 2, 1999, pp. 15-28.

[6] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P.
Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu, Advances in
Network Simulation, IEEE Computer, vol. 33 no. 5, May 2000, pp.
59-67.

[7] R. Caceres, P. Danzig, S. Jamin, and D. Mitzel, Characteristics of
Wide-Area TCP/IP Conversations, Proceedings of ACM SIG-
COMM ‘91, pp. 101-112.

[8] M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith, Tuning RED for
Web Traffic, Proceedings of ACM SIGCOMM 2000, September
2000, pp. 139-150.

[9] K Claffy, G. Miller, and K. Thompson. The nature of the beast:
recent traffic measurements from an Internet backbone, Procced-
ings of INET ’98, (http://www.isoc.org/inet98/proceedings/6g
/6g_3.htm).

[10] W. S. Cleveland, D. Lin, D. X. Sun, IP Packet Generation: Statisti-
cal Models for TCP Start Times Based on Connection-Rate Superpo-
sition, Proceedings of ACM SIGMETRICS 2000, June 2000,
pp.166-177.

[11] Crovella, M. and A. Bestavros, Self-Similarity in World Wide Web
Traffic: Evidence and Possible Causes, IEEE/ACM Transactions on
Networking, vol. 5, no. 6, December 1997, pp. 835-846.

[12] C. R. Cunha, A. Bestavros, and M. E. Crovella, Characteristics of
WWW Client-based Traces, Technical Report TR-95-010, Boston
University Computer Science Department, June 1995.

[13] P. Danzig and S. Jamin, tcplib: A Library of TCP Internetwork Traf-
fic Characteristics, USC Technical Report USC-CS-91-495, 1991.

[14] P. Danzig, S. Jamin, R. Caceres, D. Mitzel, and D. Estrin, An Em-
pirical Workload Model for Driving Wide-Area TCP/IP Network
Simulations, Internetworking: Research and Experience, vol. 3, no.
1, 1992, pp. 1-26.

[15] B. M. Duska, D. Marwood, and M. J. Feeley, The Measured Access
Characteristics of World-Wide-Web Client Proxy Caches, Pro-
ceedings of the USENIX Symposium on Internet Technologies and
Systems, December 1997, pp. 23-36.

[16] L. Fan, P. Cao, J. Almeida and A. Broder, Summary Cache: A Scal-
able Wide-Area Web Cache Sharing Protocol, Proceedings of ACM
SIGCOMM ‘98, pp. 254-265.

[17] A.Feldmann, BLT: Bi-Layer Tracing of HTTP and TCP/IP, Pro-
ceedings of WWW-9, May 2000. (http://www.research.att.com/
~anja/feldmann/blt_httptrace.abs.html)

[18] W. Feng, D. Kandlur, D. Saha, K. Shin, Blue: A New Class of Active
Queue Management Algorithms, University of Michigan Technical
Report CSE-TR-387-99, April 1999.

[19] S.D. Gribble and E.A. Brewer, System Design Issues for Internet
Middleware Services, Proceedings of the USENIX Symposium on
Internet Technologies and Systems, December 1997.

[20] B. Mah. An Empirical Model of HTTP Network Traffic, Proceedings
of IEEE INFOCOM ‘97, April 1997. (An extended version is at
http://www.ca.sandia.gov/~bmah/Software/HttpModel/)

[21] G. R. Malan and F. Jahanian, An Extensible Probe Architecture for
Network Protocol Performance Measurement, Proceedings of ACM
SIGCOMM ’98, September 1998, pp. 215-227.

[22] S. McCreary, K. C. Claffy, Trends in Wide Area IP Traffic Patterns:
A View from Ames Internet Exchange, CAIDA Technical Report
(http://www.caida.org/outreach/papers/AIX0005/).

[23] J. Mogul, The Case for Persistent-Connection HTTP, Proceedings of
ACM SIGCOMM ’95, pp. 299-313.

[24] H. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H. Lie,
and C. Lilley, Network Performance Effects of HTTP/1.1, CSS1, and
PNG, Proceedings of ACM SIGCOMM ‘97, September 1997, pp.
155-166.

[25] T. Ott, T. Lakshman, and L. Wong, SRED: Stabilized RED, Pro-
ceedings IEEE INFOCOM ‘99, March 1999, pp. 1346-1355.

[26] V. Paxson, Empirically Derived Analytic Models of Wide-Area TCP
Connections, IEEE/ACM Transactions on Networking, vol. 2, no. 4,
August 1994, pp. 316-336.

[27] V. Paxson, and S. Floyd, Wide-Area Traffic: The Failure of Poisson
Modeling, IEEE/ACM Transactions on Networking, vol. 3, no. 3,
June 1995, pp. 226-244.

[28] V. Paxson, and S. Floyd, Why We Don’t Know How To Simulate The
Internet, Proceedings of the 1997 Winter Simulation Conference,
December 1997.

[29] F.D. Smith, F. Hernandez Campos, K. Jeffay, D. Ott, What TCP/IP
Protocol Headers Can Tell Us About the Web (Extended Version),
http://www.cs.unc.edu/Research/dirt.

[30] K. Thompson, G. Miller, and R. Wilder, Wide-Area Internet Traffic
Patterns and Characteristics, IEEE Network, vol. 11 no. 6, Novem-
ber/December 1997.

[31] Z. Wang and P. Cao, Persistent Connection Behavior of Popular
Browsers, December 1998. (http://www.cs.wisc.edu/~cao/papers/
persistent-connection.html)

[32] A. Wolman, et al., On the Scale and Performance of Cooperative
Web Proxy Caching, Proceedings of ACM SOSP ‘99, December
1999, pp. 16-31.

[33] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T.
Landray, D. Pinnel, A. Karlin, and H. Levy, Organization-Based
Analysis of Web-Object Sharing and Caching, Proceedings of the
2nd USENIX Conference on Internet Technologies and Systems,
October 1999.

[34] http://www.caida.org/tools/measurement/coralreef/
[35] http://moat.nlanr/net/Traces/
[36] http://www.napster.com
[37] http://us.mediametrix.com/data/thetop.jsp


