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Abstract ment study that collected over 500 GB BEP/IP headers in
We report the results of a large-scale empirical study of web 1999 and 200Grom ahigh-speed link connectingur univer-
traffic. Our study is based on over 500 GBTa&IP/IP protocol- sity campus to its Internet service provider.

header tracesollected in 199%nd 2000 (approximately one
year apart) from the high-speed link connecting Theversity

of North Carolina at Chapel Hill to its Internet servipeo-
vider. We alsouse aset of smaller traces from tHéLANR re-
pository taken at approximatelyhe same times focompari-
son. The principal results from this study are: (1) empirical data
suitable forconstructingtraffic generating models ofontem-
porary web traffic, (2) new characterizations of TE#hnection

While one motivation for our measurementas toprovide the
modeling foundation fogenerating synthetiaveb traffic, an-
other motivation was toprovide new results on the effects re-
cent versions of th&iTTP protocols arehaving on the charac-
teristics ofweb traffic in the Internet.For example,measure-
ments of TCP connection usage for earéssions ofthe HTTP
protocols pointed to clear inefficiencies in design, notably the

usageshowing the effects oHTTP protocol improvement,
notably persistent connection®.¢, about 50% ofweb ob-
jects are now transferred orpersistent connections)and (3)
new characterizations ofveb usageand content structurethat
reflect the influences of “banner ads,” server Idalancing,
and content distribution. A novel aspect of tkisidy is adem-

onstration that a relatively light-weight methodology based o

passive tracing of onlyTCP/IP headersand off-line analysis
tools can providetimely, high quality data about web traffic.

We hope this will encourage more researchers to undertake on

going data collection and provide the research commuwiti
data about the rapidly evolving characteristics of web traffic.

1. Introduction and Background

By any measuredjuantity — bytes, packets, dlows — web
traffic has become theingle largestconsumer of Internet re-
sources [9, 22, 30]Goodcharacterizations dfiow web traffic
“looks” in the networkare essentialfor networking experi-
ments investigating end-to-end performance issues inwtie
Usually thisinvolves constructing anodel ofweb traffic and
using the model to introduce synthetically generated tatiic
into a simulation or laboratory network. For exampleriical
element of networking researdhvolving the effect on web
traffic of TCP’s end-to-enadtongestion-controlmechanism, or
router-based mechanisnmich asRED, is the generation of
synthetic web traffic for experiments [4, 8, 18, 25Paxson
andFloyd [28] have presentedompelling arguments for the
importance of using application-dependertut network-

independent traffic sources layered over (real or simulated) TC
implementations insuch experiments. Constructing a traffic

generator forTCP applications dependsultimately on the
availability of high quality measuremendlata that represents
application characteristics. In thigaper we addresthis re-
quirement forweb traffic. We present the results ofnaeasure-

creation of a differenTCP connectionfor eachweb object ref-
erence [23]. Recentkevisions tothe HTTP protocol, notably
version 1.1 [24], haventroduced theconcepts ofpersistent
connectionsand pipelining. Persistent connectionare pro-
vided to enable the reuse ofsangle TCP connectionfor multi-
ple object references at the same IP addfygscally embedded
components of aveb page). Pipeliningallows the client to

" make a series of requests orpersistent connection without

waiting for aresponse betweesach request (the serverust,
however, return responses in the sader asthe requests are

sent). As browsers and servers have migrated to support the 1.1

version of HTTP, there has been vdityle datacollectedfrom
production networks to show how these protoeadifications
have changed the usagedbehavior of TCP connections. Our
results show thaHTTP 1.1 is already producing vensignifi-
cant effects. We also show that other rapiélyolving devel-
opments such as the presence of “banner ads,” servebédad
ancing, and content distribution networ&seinfluencing sev-

eral observable characteristics of TCP connections in the web.

A final motivation is related tomethodology. Our approach
emphasizes simplicityand apassive, non-invasivenethod of
measuring. Weusedwidely available packet-capture tools to
gather tracesonsisting only ofTCP/IP headers, eachime-
stamped with its arrival time. Using only theformation in
the TCP/IP headers and knowledge of &P andHTTP proto-
cols, wecreatedtrace-processing tools to analymedividual
TCP connections and reconstruct properties ofttigher-level
protocol (HTTP) from theTCP segment headers. Véxplicitly

l:,decided not to capture HTTP protocol headers mostly because of

privacy concerns about tracing usedstafalling beyond the
TCP/IP headetfsand also taeducethe volume ofdata intraces
covering extended periods of time. We show that tme of
relatively straightforward methodologgan producetimely,

high quality data and we hope to encourage more researchers to
undertake ongoing data collection programs. If this happens, it

will help provide the research community with matataabout
the rapidly evolving characteristics of web traffic.

* This work supported infarts by1grants from the National Sci€ocm-
dation (grants CDA-9624662, '| ] (
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From the analysis ofur trace data, as well afata acquired by
NLANR during the same periods, we make a numbeol¥erva-
tions about theevolving nature ofweb traffic, the use of the
web, the structure ofveb pages, theorganization ofweb serv-
ersproviding this contentandthe use ofpacket tracing as a

method for understanding dynamics of web traffic. Specifically:

« From a methodology standpoint, we conclude thatitastan-
tial and detailed analysis of HTTP request/respansehanges
is possible given onlythe TCP/IP headers opacketssent

from servers to clients. Given only a unidirectional trace, one

can discerntransport protocol phenomendhe effects of
higher-level protocolse€(g, the use ofpersistentHTTP con-

nections), andapplication-level phenomena.@, the num-
ber of embedded objects and the number of semlelizering
this content). Moreover, thesedata can bequickly and
cheaply obtainedThe most recent tracesere acquiredwith

commodity PCsand publicly available packetcapturing
software. We have also developed a rich setoofs for proc-
essing unidirectional packet traces that enabled ymdsent
much of the data in this paper less than a maitér the raw
traces were acquired.

* We conclude that traces wfeb traffic must be quitdong (on
the order of hours) in order to fully capture the tail of the-
tribution for measures such as the size reGponses from

the largest objects transferred. Vired that the top 15% of
object sizes account for 80% of the bytes sent by se(odrs
jects greater than 1 MB in size account for 25% of the bytes).

* From an analysis ofiTTP requests we seeovel uses of web
requests toimplement applicationssuch as “webemail.”
These uses result in a shift in thestribution ofrequestsizes
because filesarebeing transferred to servers.¢, email at-
tachments) in the context of an HTTP request.

The remainder ofhis paper is organized as follows. Section 2
reviews the literature in previous measurement studieretf
work traffic in generaland webtraffic in particular. Wealso
review the methodsised togatherand process networkraces.
Section 3 gives an overview ofir measuremenmethodology
and presentssummarystatistics for the tracescomprising our
study. Section 4 presentsur methodology for reconstructing
andanalyzing HTTP connections given onlythe information

contained in TCP/IP headers. Section 5 presents the analysis of

user browsing metrics such #Enk time. Section 6 gives our
analysis ofthe usage off CP connections byHTTP including
the effects of persistent HTTébnnections.Section 7analyzes
HTTP request andesponse sizes. Section 8 discusseslithe
tations ofthe methodology usedand how theselimitations
introduce uncertainty in the reported resukmally, Section 9
summarizes the results and conclusions of our study.

servers to clients. We have observed that a very small number

of responses from servers are multiple hundreds\@jabytes
(some close to a gigabyte) and that T@P connectionscar-

rying some responses can be active for upwards of an hour.

« From a protocol usagstandpoint, we observthat (port 80)
web traffic has declined recently as a percentage ofttial
number of TCP connections recorded. Fab traffic, 15% of
all the TCP connections carryinddTTP request/response ex-

changesare persistent inthe sense that they actually carry

more than one request/responsechange.Thesepersistent
connectionsdeliver 40-50% of all thaveb objects requested
andthese objects accoufir approximately40% of all the
bytes transferred. Thus, although the fractioncefinections
that are persistent is small, theiserepresents &0% reduc-
tion in the totalnumber of TCP connectionsrequired to de-
liver web content (compared to a similarenvironment in
which persistent connections are not used).

¢ From an analysis ofiTTP responses, weee that 65% of all
web pages are constructed entirely by responses fremgle
server while 35% of the pages receiventent from two or
more servers. Close to 70% of the consecutive top-Ipagle

references go to an IP address that is different from the addre
used for the previous top-level page reference [29]. We specu

late that this reflects the increasimiggnd of largeorganiza-
tions to manageweb sites with a “servefarm” for load bal-
ancing.

* We also see a year-to-year increase in the numbembgdded
objects per web page and anincrease in thefrequency of
smaller objects. This ipossibly due tothe pervasiveuse of
“banneradds” andcons todecoratepages. Overall theum-
ber of bytes transferred to delivesmbeddedobjects is in-
creasing [29].

¢ Overall we see alight year-to-yeaincrease in the frequency

of small response objects but a marked increase in the size

2 It is our intent to distribute both otools and the data we have ac-
quired (and are continuing to acquire).

2. Related Work

Two important measurement efforts thdbcused onapplica-
tion-specific traffic models, but whiclprecededhe growth of
the web,wereconducted by Danzigt al, [7, 13, 14],and by
Paxsonand Floyd [26, 27]. Morerecently, measurements to
characterizeveb usage have become a very actiea for re-
search.Becausecachingand content deliveryare widely con-
sidered vital to the long-term viability of the web, most of the
high-quality data currently available isfocused onproviding
inputs to cache ocontent delivery evaluationg.g, [15, 16,
19, 32, 33]. For these studies, the critical data are tracksgasr
of URL referencestypically collected at proxies oservers.
There is mucHess dataavailable that isfocused on how web
browsing behaviors bysers result in the creation nétwork
traffic. For networking studies, the criticadlata arerelated to
characterizing the TCRonnectionsbetweenweb browsers and
servers in terms ofonnection establishmentates and the
sizes and timing of exchanges of request and response data.

Web traffic generators iruse today are usually based on data
from the twopioneering measurement projects thidcused on
pturing web-browsing behaviorshe Mah [20], and Crov-
ella, et al, [3, 5, 11, 12] studiesTraffic generatorshased on
both of these sources have been built into widely usedns
network simulator [6] that has been used in a numbestudies
related to web-like traffice.g., [18, 25]. These modelbave
also beerused togenerate web-like traffic in laboratorget-
works [4, 8]. Forboth sets of measurements, thepulations
of users were highly distinctive and the sizes of the trgegh-
ered wereelatively small. Mah captured dateeflecting auser
population ofgraduatestudents in the Computer Science De-
partment at UC Berkeley. His resultsere based omanalysis of
approximately 1.7 millionTCP segments carryingdTTP pro-
tocols. The measurement programs by Crovehdcolleagues
reflected a usepopulation consistingprimarily of undergradu-
te students in the Computer Science DepartmenBacetton
University and in aggregate representedund 1million refer-
ences toweb objects. In addition, both sets dfta are now



relatively old (especially asneasured irfInternet time”). The
Mah data were collected in 1995 and the Croveltal, data in
1995 and 1998. It is especially important to note thdiese
studieswere conducted beforsignificant deployment oHTTP

version 1.1 protocolimplementations.For comparison, our
study involved traces consisting of over 8@0ilion TCP seg-

ments generated by a user populatiorapproximately 35,000
and representing the transfer of somendilion web objects.
Moreover, we have developedcapability for nearly real-time

analysis of our data (the firgtraft of this paperwascompleted
within a month of collecting the last traces).

We are aware of at least fiygojects involving the analysis of
large-scale packet-level tracesntaining web traffic. None of
these projects have reported on aamyalysis ofthe traces to
extract information complete enough deeate trafficgenerat-

3. The Trace Data

The data used in our study are from two sourdde two largest
tracecollections wereobtained by placing networknonitors
on the high-speed linlconnecting the University of North
Carolina at Chapel HillUNC) campus network to thinternet
via our Internet service provider (ISP). All units of thmeiver-
sity including administrationacademicdepartments, research
institutions, and amedical complex (including hospital that
is the center of a regional health-care network)ua# asingle
ISP link for Internet connectivity. Thaserpopulation is large
(over 35,000) anddiverse in theirinterestsand how they use
the web — including, for example, student “surfin@hd music
downloading), access to researphblications and data, busi-
ness-to-consumershopping, and business-to-businesspur-
chases by theniversity. Inaddition to the thousands of on-

ing models or characterize user browsing behavior. Gribble andc@mpus computers (the large majority of whare Intel archi-

Brewer [19] focused their study on factdigt would be of use
to webcache designerglocality, cache-controlheaders,etc.)
but they also reported sontta on requesnterarrival times
and mean sizes forHTML, GIF, and JPEG object types.
Balakrishnan,et al. [2], wereconcerned with issues related to
improving TCP performance such aBCP loss recovery, ACK
compression, receiver bottleneckandcongestion control for
multiple parallelconnections.Cleveland,et al [10] created a
statistical model for generating TCP connection starttimes
from webclients using a notion of connection-raseperposi-
tion but theydid not model othefTCP connection characteris-
tics orweb browsing behaviorResearchers at thgniversity

tecture PCs running some variant of Microsoft Windovggy-
eral units of the university operate dial4dmodempools (total

of about 250 ports) that are used by some students, faculty, and

staff for access from home. In effect, theiversity is alocal
ISP for this population, forwarding all Internet traffic to its
upstream ISP. Therareonly ahandful of smallproxy servers

on campus so almost all the web traffic is generated directly by

browser actions. It is important, however, to remember that all
web traffic we observedepresents onlyequests thatould not
be satisfied from local browser caches.

We usednetwork monitors tocapture traces of TCP/IReaders
from all packets entering and leaving the campeswvork. The

of Washington collected large-scale traces that were used in twQraces were collected during six one-hour sampling pered$

studies ofweb proxy caching [32, 33].Feldman [17] summa-

day. The one hour sampling periods were 8:30-9:30AM,00-

rizes the results of over three years of large-scale trace-12:00 noon, 1:30-2:30PM, 4:00-5:00PM, 7:30-8:30PM, and

gathering projects using PacketScope monitwith special

on-line analysissoftware to processiTTP headers) aseveral

locations inthe AT&T WorldNet IPnetwork. She reviews the
many challenges faced in reconstructing T€&nections from
individual segmentsaandreconstructingHTTP protocol charac-
teristics from TCP connectionsand HTTP headers (many of
which we encountered with our own analysis tools).

Our approach is touse off-the-shelf hardware andpublicly
available packet capturols. Privacy considerations limit us
from capturing more than th&CP/IP headerhowever, as we
show below, withcarefulanalysis significantand substantial
data onprotocol usageandthe nature, structureand distribu-
tion of web contentcan be gleaned from just tHECP/IP head-
ers. One drawback to our approach is thatpaticessing of the
traces is doneff-line. This means that the length whces is
fundamentally limited by the amount of disk spameailable,
the packet arrival rateand the bytestraced perpacket. As a
practical matter this limited individual traces DEP/IP headers
to about one hour (we expect to soaddenough diskcapacity
to trace overeight hour intervals). More elaborate hard-

10:00-11:00PM. These periods were chosen somewatiztrar-
ily to produce fourtraces during the normabusinessday and
two during non-businesshours when traffic volumesvere still
reasonably highOneset of tracexonsists ofall the TCP/IP
headers collected during these sampling intervals owsvan-
day period, in late September 1999. This seven-day period

vided a set of six traces from each of the seven weekdays for a

total of 42 one-hour traces. This set of traces willrdferred to
in this paper aSUNC-99.” The second set of 42 tracesso
consists oftraces taken at the same hours ovesemen-day
period, in late September 20@feferred to aSUNC-00"). This
allows us to compare results from traces gatheapgroxi-
mately one year apart.

When the UNC-99 tracesere gathered,our campuswas con-
nected to thelSP by an OC-3155 Mbps) full-duplex, ATM
link. This link carried allnetwork traffic between the campus
and the “public” Internet (traffic between the campumsl Inter-

net 2 sites was routed over a separate OC-3 link). We placed the

monitor on the OC-3 link to the “public” InterneThe specific
monitor usedwasthe OC3mon developeiitially at MCI for

ware/software instrumentation that supports continuous capture;BNS [1] and now distributed bZAIDA (CoralReef) [34].This
andreal-time analysishas been developed elsewhere [17, 19, monitor was passively inserted in the link using a fiplitter

21, 32]. For our intended uses of the data, howeverelieve
our simpler approach represents a viable alternativendtru-
mentation embedded directly in browser software osgecial-
ized tracing hardware andoftware that analyzes entifgacket
contents (includinguser data) andogs the results. Both of
these approaches present significant barriers to widespsad

to divert some light from the optical signal. The signainiput
to the receive port of an ATM interface card in an Irgathitec-
ture PC equippetvith large, high-performance disk8ecause
the link wasfull-duplex (two fibers), themonitor required two
ATM interface cards, eaateceiving the signafor one of the
directions of transmissioni.€., inbound or outbound with re-

Given the rapidly falling prices and increasing sizes of PC hard spect to the campusfhe OC3mon software ran offreeBSD

disks, it is quite feasible tasevery largepools of storage for
intermediate processing of TCP/IP header traces.

(version 2.2.8) and produced traces of timestamped ergiies
ing the contents of ATM cells carrying the TCP/IP headers. The
trace entries for each interfageerefiltered into separatéraces



for the inboundand outbound traffic. We also converted the
OC3mon trace into the format used topdumpusing alocally-
modified version of a toolmon2dump originally developed at
MCI.

A year later when the UNC-00 tracegretaken, thelSP link

had been replaced by an OC-12 (622 Mpbs) path based o# TCP Packets

Cisco-proprietary DPT technology instead of ATM. Thus we
could not usethe samemonitoring tool weusedfor the 1999
traces. Fortunately, all the traffic between tteampusand the
Internet traversed aingle full-duplex gigabit Ethernetlink
from the campus aggregation switch to #uge routewith the
DPT interface. In this configuration, both “public” Internet and
Internet 2 trafficare co-mingled on the one Ethernet lir(khe
only traffic on this link is traffic toand from the ISP edge
router). We again placedraonitor on this gigabit Ethernet by
passively inserting &ber splitter todivert somelight to the
receive port of ajigabit Ethernet networlnterfacecard (NIC)
set in “promiscuous” mode. As the linas still full-duplex,
the monitor requiredtwo NICs, andeach monitored one direc-
tion of transmission.The NICswere hosted in a PGunning
FreeBSD version 3.2. An instance of ttepdumpprogram was
run on each of the interfaces to collect a tracd ©P/IP packet
headers. Buffer space of 3 MBasallocated to theébpf devices
used bytcpdumpto buffer transient overloads in packet arri-
vals. Thetcpdumpprogram reportstatistics onthe number of
packets dropped. We found that in many traces no packerts

dropped and that the maximum number of drops in any trace wa

less than 0.02% (average of 0.004% drops over all tréces).

In this paper weuse dateonly from the traces of packeffow-

ing into the campus network from th8P (“inbound” packets).
Summarystatistics for the inbound packets in the two sets of
UNC traces is given irnTable 1. The volume of Internetdata
increasedsignificantly between 1999nd2000. Some part of
this can be attributed to the fact that tB600 dataincludes
both “public” Internet and Internet 2 traffic. However, most of
it is simply growth of Internet usage by theiversity popula-
tion. While the number of HTTP bytes flowing into the campus
doubled betweerl999 and 2000, web traffic actually declined
as a percentage of allCP traffic. This is attributed to theud-
den popularity of the Napster application for downloading
audio files [36].

As a “sanity check” obur data, twoconsiderably smallesets
of traces from the repository of tracesNitANR [35] were used

Table 1 Summary data for the UNC and NLANR traces
(all counts in thousands).

4. Analysis of TCP Connections

Because we havenly traces ofTCP/IP headers, all thestatis-
tics we report here have bearived fromanalysis ofthese
headersknowing their formatsand the dynamicbehaviors of
the TCP and HTTP protocols. The primary information used
from the TCP/IP headersvasthe IP sourceanddestination ad-

UNC-99 UNC-00 NLANR-99 NLANR-00
TCP Packets 525,258 1,872,964 16,919 18,656
85.08% 90.77% 84.66% 90.13%
UDP Packets 89,759 180,482 2,681 1,596
% UDP Packets 14.54% 8.75% 13.42% 7.71%
HTTP Packets 232,245 602,183 9,263 7,617
Yo HTTP Packets 37.62% 29.18% 46.35% 36.80%
Total Packets 617,333 2,063,351 19,985 20,699
TCP Bytes|211,610,632 721,866,693 8,374,506 9,744,043
% TCP Bytes 86.15% 89.84% 93.08% 95.859
UDP Bytes| 33,760,062 80,921,395 480,644 385,298
% UDP Bytes 13.74% 10.07% 5.34% 3.79%
HTTP Bytes| 138,050,697 278,484,679 4,198,123 3,351,340
%HTTP Bytes 56.20% 34.66% 46.66% 32.97%
Total Bytes |245,636,674 803,493,236 8,996,799 10,165,498

Yresses, th@rotocol number (to identify TCP segments), the

source and destination ports, the TCP flags (to detect SYN, FIN,
and Reset), the data sequence number, anddkrowledgement
(ACK) number.

The OC3mon tool used to gather theUNC-99 andall the
NLANR traces timestamps the arrival of each trace entry using a
clock local to theATM interface card that receives thelata.

Because the trace entries from each direction of data flow on the
full-duplex OC-3 link are timestamped with a different clock, it
is difficult to create a mergehi-directional trace in thecorrect
order. Even though the Coral software attemptitalize the
clocks on both interfaceards tothe same value, there isu-

ally a randominitial offset between the clockandthe clocks

may drift at different ratesOur attempts toproduce merged bi-
directional traces by sorting on timestampesulted in darge
number of TCP connections with obviously incorrectierings
(e.g, SYN+ACK before SYNY Fortunately, it is nonecessary

for comparison. This allowed us to both debug our measuremento merge (or evemse)both directions oflata flow in order to

methodology and verify that other university campuses see
similar patterns of web traffic. The NLANR trace&re gathered
using the OC3mon/Coral software described above. We selecte
from the NLANR repository two sets of traces collected at ap-
proximately the same time periods ih999 and 2000 as our
UNC traces. Within these time periods, we selected trioces
sites thatappeared to haveelatively high volumes otraffic

during the sampling times used by NLANR. The set of traces we

refer to as'NLANR-99” is composed of eight tracédsom each
of two sites (Merit-University of Michiganandthe SanDiego
Supercomputer Center “commodigonnection”) all taken on
September 19,1999. Our “NLANR-00" set also consists of
eight traces from the same sites. These traegsall taken on
September 28, 2000. Summastatistics for the NLANR traces
are also given in Table 1.

3 The OC3mon does not explicitly report dropped packetshalts with
an error if the trace overruns tlesk. This did notoccur in any of our
traces.

reconstruct important elements of the internal dynamiitiin
a TCP connection and infer parts of the HTTP protocol.

%onsider a trace consisting only ©CP/IP packet headersap-
tured onthe interface receiving IP packets arriving on the in-
bound path (to the universitirom its ISP). We first filterthis
trace to pull out only those IP packetderethe protocol field
in the IP header designates T@Rdthe sourceport field in the
TCP headercontains the value 80 (the normaHTTP server
port). This produces a trace of TCPfBcket headers thatere
sent fromWeb servers somewhere in the Internet \Web cli-
ents (browsers) located at thmiversity. This filtered trace is
then sorted on three keys in the followingder: source IP ad-
dress and port, destination #éldress angort, andtimestamp.
This produces a time ordered trace of T&&gments within each
TCP connection (actually within unique TCP connection ad-

4 Later versions of the Coral software have improved kibends on
clock synchronization.



dress4-tuples; portreuseoccasionallyproduces multiple TCP
connectionsusing the same 4-tuple within a trac&phe HTTP
protocol is asymmetric —the client alwaysnitiates the con-
nection (sends th@CPinitial SYN segment).The server nor-
mally continues theconnection establishment protocol by
responding with &SYN+ACK segment. ThisSYN+ACK seg-

timestamp on the trace entry containing the first advance in the
sequence number fielfbllowing a sequence of requesteg-
ments. A response’s ending time is the timestamp on the trace
entry that lastadvanced thedata sequence numbbefore the
response ended (a new requatsirts, aFIN is sent, etc.). Simi-

larly, a request is considered to end at the timestamp omaste

ment should appear in our trace and its timestamp is used for thérace entry of the request.

beginning time of a TCP connection. Similarly tbennection
is considered tcend when aFIN or Reset segment from the
server is found in the trace.

For the HTTP protocol, weareinterested in the exchanges of
data between the browsandserver thatoccurwithin the TCP
connection. Specifically, wevant to identify the firstandlast
bytes of browserequestsandthe first andlast byte ofserver
responsesFor those casewherethe TCP connection isused
for more than one request/response pair (when botlhriineser
and server support persistent connections)needl toidentify
the beginning and end ofrequestsand responsesfor multiple

All of this would bequite straightforward if itwerenot for all
the ways real TCRonnectionsdeviate from suchvell-behaved
traces®> Retransmissionsand segment reordering in theet-
work disturb this use of advancin§CK/data sequenceumbers
to mark requests and responses. In traceBC8f segments, the
data sequenceumbers may not benonotonically increasing.
In some cases, such as re-orderingsetransmissions odata-
only segments in a response, this presents no prokiece
only the highest sequence number seen is UBegllength of a
response in a persistent connectioan be computed as the
difference between the (largest¢quence at thend of one re-

exchanges between the browser and server. Fortunately the TCBponseandthe (largest)sequence at thend ofthe subsequent

protocol allows us to infer thisnformation from examination
of only the TCP segments flowingfrom the server to the
browser. Consider the common cagkere the first TCP seg-
ments that flow on arestablished TCP connection are the
HTTP-requesprotocol elements sent bthe browser. As the
TCP protocol stack on the server receives the segmest(s)}
prising the request, it will sendCP acknowledgmensequence
numbers(ACKs) indicating the in-order bytesequence it has
received. These may be sent §egments containing only an
ACK or in segments containing aACK along with HTTP-
response protocol elemenasid perhaps object datdhe ACK
may be senimmediately, delayed by up t®00 milliseconds,
or be sent on the next outbouddtasegment on thatonnec-
tion. Theimportant observationarethat the ACK value will
advance by an amouegual tothe size of the requesgtotocol
elements and that all of thequestmessage will béACKed no
later than the first segment carrying angata forthe corre-

response.ACKs should bemonotonically increasing so the
length of a request in gersistent connectiocan be computed

as the difference between the ACK value marking the end of one
request and the ACK valuaarking theend ofthe next request.
Unfortunately, out-of-order segments can cause ACKappear

to “go backward.” For segments withodata(ACK only), sim-

ply ignoring the “backward”ACK is correct. Reordering of
segments with changes in both data sequence nurahdr&CK
values presents problems since boundaries between requests
and responses may be missed which can resualvémstating or
understating request and response sizes. Issues relatedlio

sis of TCP segments are discussed in Section 8.

5. User and Web Content Characterizations

Our traces do not include any part of the user data carried in TCP
segments and hence we do not have access to any bifTife

sponding response. The size of the response is indicated by thBrotocol headers. We must, thereforase heuristics toinfer

amount thedata sequence numbadvances in segmentsom
the server. Note thahis method of computing theesponse

characteristics ofiser andorowser behaviofrom the analysis
of TCP connections. The first step in this process is to sort the

size means that it is the sum of the HTTP headers and the size gfummarydescriptions of théfCP connections ineach of the

the referenced object. Since the HTTP response headen®are
trivial in size (around200-300 bytes is typical)the reported
response sizes are larger than actual object sizes.

In the case opersistent connectionsvith more than one re-
quest/response exchange, we \gile amalternating pattern of
advancing ACK values followed by advancinglata sequence

individual traces as produced by thralysis program described
above. These summary tracesesorted on twdkeys; first by
uniqueclient IP addresses (thenique IPdestination addresses
found in a trace filtered for sourg®rt 80)and then by time.
This creates a time-sorted summary of TP connection ac-
tivity between each individual clierandthe server(s) thatli-
ent used during the one-hour tradde time-sorted summary of

numbers from the server. Pipelining could complicate the iden-TCP connections contains the connection start time chiemt

tification of request/response exchanges in persistennec-
tions and is discussed in Section 8.

Fundamental to all of this is thebservation that aerver
should not be sendindata inresponse to sequestunlessthat
data is accompanied @receded by amadvance in theACK se-
guence covering receipt of the request segme@itsilarly, any
new data segment sent by a server follows, or is accompa-

IP address and port number, the server IP addresbethigning
time and size irbytes ofeach request, thkeginning and end-
ing times of each response along with its siaedthe ending
time of the connection. We tharsethis time-orderednforma-

tion to infer certain characteristics of activity by the user or the
browser.

We assume that in the vast majority of cases a cliemtdtPess

nied by, an advance in th&CK sequence number is assumed to identifies a singlehuman userunning one or morérowser

be a response to thlrequestthat causedthe ACK sequence to
advance. Put another way, response segmentgq{@ence num-
ber advance) mark thend of a request aniiCK advancesnark
the end of aresponse. Ofourse other events such BEN or
Reset can mark enddso. Arequest's start time is thBme-
stamp on the trace entrgontaining the first advance in the
ACK field following the connection establishment or a se-
guence ofresponse segments. A response’s stane is the

instances on a personal computenarkstation. Although we
know that there are times when multiple users concurrently run
browsers on a shared compute serfgéngle client IP address),

5 We describe herenly the “expected” exceptional behaviorslated
to loss, retransmissions, aneordering; theruly bizarre sequencethat
our analysis tools uneartheate fortunately so rar¢hat completely dis-
carding those connections does not effect the results.



we believe this to beare on ourampus wherghere isbasi-
cally one computer for each Internet user. Furthermeugn
though the vast majority of computers oar campus have IP

addresses assigned by DHCP, we believe the reuse of a given IP

address on different machines duringiagle onehour trace is

rare becausteases last eight hours or more. Further, many of
the larger DHCP servers maintain a fixed mapping of IP address

assignments to Ethernet MAC addresses.

Using heuristics similar to those developadginally by Mah
[20] and Barford andCrovella [3], we attempted tadentify

points in each client’s activity that are likely to mark a request

for a new (or refreshed) page. Wsethe term “page” as aon-
venient label for a web object referenced itt@p-level” sense,
i.e., it is notreferencedhrough interpretingreferences found
internal to some other objecte.¢, embeddedreferences in
HTML). We also usethe term “object” synonymously with a
responsefrom aweb server. Serveresponses thagare error
reports €.g, “404 — Notfound”) arecounted asobjects (or
pages) in this discussion. We assume that page referances
mally occur after some period of idle think” time at the cli-
ent, e.g, the time auserspends digesting theontents of one
browser display beforselecting (or entering) a link to a new
page. This same model of a pageguestfollowing anidle pe-
riod also captures the behavior of periodicalgfreshedpages.
User actions that complicate this simpldew of behaviors
such as clicking the browser “stop” or “reloablittons while a
page is loading or &quick click” on a link before thepage
loads completely, are discussed in Section 8.

We define an idle periofieuristically by examining théime-
orderedset of TCP connectionsused by aclient. Weidentify
periods in which the client either has no establismé&dP con-
nections owhere noestablished connectiohas an active re-
quest/response exchange in progress. We consider a
quest/response exchange to be actik@n time the request
begins until the corresponding response ends. If pesod
with no activity persists for longer than a tirttereshold, it is
classified as an idle period. We foumchpirically that ahresh-
old of 1 second works well fadistinguishing idle periods (as
did Mah and Barford an@rovella). It is important to not¢hat
this approach works only on tracés which we can be rea-
sonably certain thatall the TCP connections for a given
browser appear in the traces. Since B&NR traces have no
information about where clients are located relative to the
monitoring point, weperform thisanalysis only orthe UNC
traces where we know the clierdage located on (or dialethto)
the campus networlandthe serversare located somewhere in
the Internet.Figure 1 shows thalistribution of idle periods
greater than one second observed in the UNC data. @heneo
appreciable differences between the 1988d 2000 results;
60% of idle periods are betweenahd 10secondsandapproxi-
mately 90% of idle periods are less than 60 seconds.

We consider the initial request/response exchange following
idle period to be for the'top-level” page object(typically
HTML) andall the subsequent request/response exchanges
fore the next idle period to be for thembedded’object refer-
ences (if any) within the initial page object. Thimssification
heuristic implies that response®nsisting oferror status are
treated as page objects. Note that top-level or embedbptts
that can be used from the browser’s local caatenot visible
in our tracesand Conditional-GET request/responsachanges
for cachevalidation found in the tracesare treated ashormal
page or embeddeabject references (see Section Bhe server
IP addressnvolved in the request/response excharige the
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Figure 1: Cumulative idle (“think”) time distribution.
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top-level page object is considered to be phienary server for

the page. All server IP addresses mgual tothe primary IP
address involved in subsequent request/response exchanges for
objectsrelated to that pagare considered to beon-primary
servers.Embeddedbjects may come from either therimary
server or from non-primary servers.

6. TCP connection usage

We have implemented a suite twibls for processingtcpdump
formatted traces that produce statistical data to characterize TCP
connection behaviors. Wiast present results concerning the
usage of persistent and non-persisteohnections.Our classi-
fication of a TCP connection used in HTTP as persistefi¢cts
actual usageharacteristics, notwhether a browseand server
have used théiTTP protocol to establish a persisteabnnec-
tion. Our definition is thus ofeffective persistence that is,

rewhether or not &CP connection is actuallysedfor multiple
request/response exchanges.T@P connection is considered
persistent if it is actually used for two or maequest/response
exchanges. All TCRonnectionsusedfor one request/response
exchangeare considerednon-persistent.This means that TCP
connections inwhich the browserand server have enabled a
persistent connectiobut makeonly one request/response ex-
change are considered non-persistent. Partial connections
(normally at thebeginning and end otraces)andthose termi-
nated without any exchanges are not classified.

Table 2 gives summaryinformation about howTCP connec-
tions are used in the web. While 15%fewer of all TCP con-
nections are effectively persistentthey are now usedfor 40-
50% of all object referencesepresentingabout 40% of all
bytes transferred. This means tiprsistent connections now
have asignificant influence on the dynamics ofCP connec-
tions for the web. Put another way, the numbelf@GP connec-
tions required foweb traffic is now approximately 50% lower
than it would have been with thariginal HTTP protocol. Fig-

anure 2 shows the distributions of the numberedfuest/response
exchangedor persistent connection®ver 60% ofpersistent

beconnectionsare usedfor three or more request/response ex-
changes and 10% carry more than ten.

Figure 3 shows the distribution of unique T€&nnectionsused
in requesting all the object®or a page.Around 55% of all
pagesarefetched using two or moranique TCP connections
(which may be any mix opersistentand non-persistentcon-
nections depending onhe capabilities ofthe servers and
browsers).Around 50% of all pagesequired2-10 unique TCP
connections. The number of uniq@€P connectionsusedfor a



Table 2: Summary data for TCP connections used in the web
(all counts in thousands).

UNC NLANR
99 00 99 00
Top-level Objects 3,722 6,586 N/A N/A
Embedded Objects 14,799 30,836 N/A N/A
% Embedded Objects 79.90% 82.40% N/A N/A
Non-Persistent Connections 9,620 17,672 261 187
Persistent Connections 1,551 3,152 34 29
% Persistent Connections 13.89% 15.14% 11.60% 13.77%
Unclassified Connections 577 1,513 58 64
% Unclassified 4.91% 6.78% 16.51% 22.79%
Objects on Non-Persistent 9,620 17,672 261 187
Objects on Persistent 8,280 17,497 153 140
% Objects on Persistent 46.26% 49.75% 36.97% 42/83%
Bytes on Non-Persistent 66,5226824,665,042 1,490,81 991,96
Bytes on Persistent 45,471,488 84,205|017 680,123 550,485
% Bytes on Persistent 40.60% 40.41% 31.33% 35/69%

page is a result of complex factors including the number of
objects in the page, the number of serveotding theobjects
for the page, the number of concurréiEP connections the
browser opens teeach server, whether the clieahd server
support persistentonnections, and how aggressive they are
about keepingpersistent connectionsctive over multiple
pages.Figure 4gives the distribution olunique server IP ad-
dresses per page. While about 65% of all pages cabtaned
from a single server IP address, about 3&¥uireconnections
to 2-10 different IP address¢and rarely as many as 100 IP
addresses). We believe these results are a reflection ofape
page content is obtained dynamically from a numbesoefrces
including bannerads from agencysites and content that has
been explicitly distributed to content serveesg( Akamai).

7. Request and Response Data Sizes

We now consider the sizes of individuedquest andesponse
elements of theHTTP protocol as identified byour analysis
tools. Figure 5 shows the distribution @questsizes. Request
sizes are defined in our analysis as the numbdiytds sent by
the browser in a single request/response exchangxmained
above. As expected, over 90% of the requastbetween 100
and1,000 bytes in sizeThe most surprisingfeature ofthis
distribution, however, ighe tail which indicates thpresence
of some very large requests, especially in the 2@Ges.
(Note that theCCDF plot is approximately lineaover three
orders of magnitude in request size on log scales whicwons
sistent with a heavy-tailed distribution.) Wave lookedmore
closely at how these very large requests arise (waietarger
than one would expect fromubmitting forms with web brows-
ers). Aninteresting example wefound wasthe use of “web
email,” specifically users of Yahoo email, that send emegls-
sages with largattachments. lrone trace, aisersent email
with an approximately 500K attachment producinge@uest of
that size but eliciting a response from the Yahoo serverndy
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total volume ofrequestbytes in theUNC and NLANR traces
(e.g, about 20% of the request bytesme from requestsarger

2.2K bytes. We speculate that as browsers become more widelyghan 1,000 bytes in theNC-00 traces). Therehas been a no-

used adnterfaces for web-enableapplicationssuch asemail,
large request elements will become more significant.

The requests ovet,000 bytes insize already representran-
trivial contribution tothe total bytes transmitted asquests.

ticeable change from999 to 2000(5% of the byteswere in
requests larger than 10,000 bytes compared to 3% in 1999).

Response sizeare defined in ouanalysis ashe number of
bytes sent by the server insmgle request/respongxchange

Figures 6 and 7 give two views of the cumulative percentage ofas explained above. Figuresa8d 9give two views of thedis-

total bytes in requests as a function of reqeest. Theselots
clearly show the growingontribution oflarge requests to the

tribution of response sizes. Overall fimd that about 85% of
the responses observeeere 10,000 bytes or lessThesedis-
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tributions also indicatesome potentially interestingshifts
between 1999 and 2000 in tipeoportions of responses in the
range of 200 bytes td0,000 bytes. In boththe UNC and
NLANR data, we see somshift to a greaterproportion of
smaller respons@bjects. For example, in thedJNC-99 traces
about 47% ofresponseswvere 1000 bytes or smaller while in
the 2000 traces, aboBB% of theresponsesvere1000 bytes
or less.Data fromfuture years will beneededbefore determin-
ing if there is a definite shift in the relativeroportions of
object sizes in the 200-10,000 byte range.
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For response sizes greater than 10,000 bytes, we found that the
very largest objects increased significantly in size. In the UNC
traces the CCDF afesponse sizes is linear ovieur orders of
magnitude on log scales anddensistentwith earlierobserva-
tions of heavy-tailed distributions [3, 5] his probably re-
flects the increasinguise of HTTP instead of FTP to distribute
large files® The sizes of the very largestsponses in the UNC
traces are bigger in 2000 by a factor of 4-7 while tregypears

to be no change for the NLANR traces. The sizes inNb&NR
tracesaresmaller by almost two orders of magnitude. We be-
lieve that much of this difference in thdLANR data isnot due

to real changes in the sizes of responses but is an artifact of the
tracing environment.This illustrates an importanmethodo-
logical point —the ability to collect data onvery large re-
sponse objects imfluenced by the tracenterval and link
speeds. In the case of thNbLANR traces, the nominalrace in-
terval of 90 seconds is just too short to capture lasgponses
entirely. For the UNC traces, it is likely that tracindor one
hour on agigabit-speed link results in greater chance of ob-
serving larger responses than tracing for one hour 0®Gy3
link. It will be interesting to see if the sizes of the véaygest
responses increasghen we trace foright hours omore on
gigabit-speed links.

We foundsignificant differences in thedistributions of re-
sponse sizedor top-level and embeddedbjects. Figures 10

Figure 7: Complementary cumulative distribution of request 6 one specific example is CD images for softwatietribution €.g,

bytes transmitted, weighted by request size >1,000 bytes.

Linux releases)
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and 11 shows the overdlistributions of top-leveland embed- 1

ded object sizes from theNC traces. We see cleandications 0.9

that top-level objects tend to be larger trembeddedbjects.

For example, about 30% dbp-level objectsare larger than o8 -t :
10,000 byteswhile only 10% of embeddedbjects are. About 07 LYz

50% of top-level objectsare smaller than2,000 byteswhile 0.6 ?

70% of embeddedbjects are smaller than2,000 bytes.This 05
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observation is consistentvith the number of complex web
pages we all see thare composed withembeddedbjects for
icons or advertisements. Figure 10 shows indications of a year-

Cumulative Probability (% bytes)

to-year trencdtoward largerproportions ofsmaller objects in 02 v T e et o |
the range of sizes between 100 and 10,000 bytes. 01 o ) Embedded Objects99 =
0 - ;T ) Embedded Objects 00 ©
While we havefound that 85% of allresponsesare 10,000 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09
bytes or less, these responsesount foronly about20% of Response Size (in bytes)
the bytes actually transferrefdom servers toclients, and re- Figure 14: Cumulative distribution of response bytes
sponseslarger than100,000 bytesepresent over 35% of the transmitted weighted by response size for top-level and em-
bytes. Figures 12, 13, and 14 give different views of diau- bedded objects
lative percentage of total bytes in responses as a function of
response size. Figure Idves the overallcontribution ofdif- increasing in size year-to-year. For examplely 10% of the

ferent response sizes to the total bytes returned by servers. Thgtal bytes from top-level objects are from objects smahem
NLANR traces are quite similar to tH8NC traces excepabove 10,000 byteswhile about 30% of thebytes from embedded
100,000 byteswherethe truncated tracéntervals limit the objects are from those smaller than 10,000 bytes.
observation of large responses. There is a clear influence of the

larger response sizes in the 2000 UNC traces when compared tg | jmitations of the Methodology

1999. In Figure 13 we see evidence that laggects account

; ; ; Our methodology is based on making inferences fromlithe
for a higher proportion othe total bytes transmitted amon- o - . :
persistgnt c%nr?ectionsl.:igure 14 cgnfirmsour observation ited information available inthe TCP/IP protocol header for
that top-level objects are larger than embedded obpwslso one direction of a&CP connection(from off-campus server to

indicatesembeddecbbjects larger tharl0,000 bytesmay be on-campus browser in our case). There are a numbierhefent



limitations and uncertainties that arisevhen making these

also processed the one-waJyCP/IP headers-only subset of

inferences. However, the degree of uncertainty in the results is these traces with our analysis tools to reconfirm that twy

not uniform. Forcharacterizations offCP connection-level
propertiessuch as the number afonnections,the sizes and
numbers of request/response exchanges, the methodology

rectly identified all request/response exchangesl produced
correct results forequest andesponse sizesBased onthese
two investigations, wéelieve it is unlikely thatpipelining

should produce very good results. For other characterizations othas any influence on the results reported here.

the Web, especially those thatlepend onclassifying ex-
changes as belonging to top-level embeddedreferences,
there is greater uncertainty. We have identifiedr classes of
issues that contribute to uncertainty in the resubigelined
exchanges,user/browserinteractions, caches,and TCP seg-

ment processing. Each of these is discussed separately below.

Pipelining
Pipelining introduces thepossibility of errors in determining

User/Browser Interactions

Useractions at the browser leveln effectively interrupt the
request/response exchangfs fetching pageobjects. These
interrupting actionsinclude clicking the browser “stop” or
“reload” buttons while a page is loading, or a “quick click” on a
link displayed before the page loadsmpletely. The Windows
versions of Navigatoand IErespond to these actions with a
close(abort)operation for itsTCP connections(thus sending a

the numberandlengths of request/response exchanges in TCP segment with the Reset flag set to the server). Whenusiee

connections. Irthe simple casehere a serveCP stack re-
ceived all the request segments generatedpipaline before it
sent the first response segment, the ergipeline of requests
would betreated as one (larger) requeSimilarly, if a server
sent all the response segmeifs a pipelined response before
it received segments for a new client request, the epipeline
of responseswould be treated as one (largergsponse.This
would inflate the sizes of requests am$ponsesand deflate the
number of exchangesper connection. Inmore complicated
caseswhere apipeline of requests overlapped with (one or
more) responses eice versathe analysis tool would infer the
sizes of individual requests and responses incorrectly.

A somewhatdated(1998) studyfound that pipelining was not
implemented in popular browsers [3XQur observationsshow
that browsers still do noappear to employipelining. This
was determined through two separateestigations of browser
behavior using thecurrent (late 2000) releases of the two
browsers that dominate usage on our campus: Netddapiga-
tor (version 4.7) and Microsoft Internet Explorer (vers®mb).
For the first study we configured an Apackeb server tosup-
port persistent connectionsand pipelining. A moderately
complex web page consisting of a b&$EML file with 20 em-
bedded references to objects of various sizasplaced on the

server. Using arHTTP server test program, we generated

known pipelinedrequests for the elements tfis page and
verified that the server did in fact implememgrsistent connec-
tions and pipelining (verified usingtapdumpof entire packets
flowing in both directions). We themequestedthe testpage
with both Navigatorand IE. Both browsers openechultiple
persistent connections (4 by Navigator, 2 &) but neither
constructed any pipelinetequests (verified byexamining the
resultingtcpdumptrace).

To confirm this behavior irmore realistic situationswith a
variety of page structures and serimplementations, welid a
second study. Fathis study werequestedthe site homepage
and a page one link off the home page from a web sereacht
of the top-twentyweb properties as reported hylediaMetrix
[37]. We madethese requests withoth Navigatorand IE and
recorded tcpdumps a@ntire packets flowing irboth directions.
We then analyzed the traces using ttapturedHTTP headers
and sawthat no instances of pipeliningcould be foundeven
though most pages had numerous embedded olgadtsitmost
sites one or more servers supported persistennections. We

7 Using TCP/IPheaders fromboth directions of flow in af'CP connec-

tion would not substantiallimprove these uncertainties because they

arise from a lack of informatiore(g HTTP headers, cacheontents, or
user actions) not available at this level.

10

does either a “reload” or “quicklick” while a page idoading,
the browser immediatelpegins the process of loading a new
page. As a result, our page-detection heuristic (based adlean
interval greater than one second)sidentifies thetwo pages
involved in one of these interrupting actions as only page.
Theresult is that some (presumably largeéop-level objects
are counted aembeddedbjects in thedistributions ofobject
sizes by type, and theistributions ofunique TCP connections
per page and unique server IP addresses visited per page may be
somewhatskewed toward largevalues. For uses of thtstop”
button, however, the latter two distributiomsay besomewhat
skewed toward smaller values since object referenceartifi-
cially curtailed. Analysis of Reset segments in th€P/IP
headers from ouclient-to-servertraces couldotentially quan-
tify the frequency ofthese user actions and provide abetter
characterization of the effect on these distributions.

Another user-related source afncertainty is thesomewhat
common case of aserhaving two or more browser windows
open at the same time. If theserhappens to invoke page ac-
tivity concurrently in multiple windows (this is expected to be
rare), our methodology will not correctly identify top-level
versus embeddedobjects and associate request/response ex-
changes with a page. This same source of uncertainty applies to
caseswheremultiple usersare running browsersconcurrently

on a compute server (multiple users per IP address).

Caches

Our traces containinformation only about pages oembedded
objects that could not be satisfied from local browser cache. If
any components of pageare inthe cache, the inferences de-
rived from the trace havancertainties thatlepend on how the
browser implementsachevalidation. For example, ifobjects

are in the cachegur trace maycontain HTTP Conditional-GET
request/response exchanges for those components. The sizes of
these conditional-GET exchanges somewhat obscure actual
sizes of objects just as responseaders do(We do, however,
produce an accurate measurement of lilgees actuallytrans-
ferred on the TCP connection.)

If the cachecontains an expiration dWAX_AGE value for an
object (orimplements somdorm of adaptivetime-to-live),
there may be nactivity in the trace for many browser refer-
ences to objects. This can cause incorrect inferencesldati-
fying the top-level pagee(g, if the top-level page igaken
from the cache but somembeddedobject is not, thetraced
fetch of theembeddedbject may be inferred to be fortap-
level object). Whilebrowser caches have no effect oor re-
sults for actual TCP connection-level characterizations, they do
introduce uncertainty in page-leveharacterizations that de-



pend on identifying the top-level page versus embeddgdcts
(e.g, distributions of sizedor top-level objectsmay contain
more small objects than they should).

Proxy cachesrenot in significantuse on oucampusand do
not contribute materially to the uncertaintiekescribed for
browser cachesTraces from other locations where proxy
cachesare deployedwould bevery interesting for comparison
purposes.

TCP Segment Processing

As we mentioned in Section 4getransmissionsand segment
reordering in the network do naauseproblemsfor the analy-

sis as long as the segments do not contain changes in both da

sequence numbers and ACK values. persistentconnections,
out-of-order segments carrying both respordsa and new
ACK values can lead to incorrect results. For examptesider
two consecutivesegments that have advances in bd#ta se-
guencenumbersand ACK values. If theseare reordered in the
network, theanalysis tool, ignoringthe smaller valueghat
arrive late, will potentially miss a request/responsxchange
andreport larger values of size€ach case of suckegment
reordering that mightlead to erroneousrequest orresponse
lengths was recordedor off-line investigation. Inthe UNC
traces, wedound about4,900 connectionswith segment reor-
dering wherethe analysis tool could not make acorrect
choice® We examined a random sample of sevdmahdred of
these caseand foundthat less than halfvere analyzedincor-
rectly. Thus we believe that a very small percentage (leas
0.005%) of incorrect size valueme included inthe data and
have no appreciable effect on the results.

A final uncertainty arises from the fact thaur tracescover
specific intervals of time. This means that at theginnings
andends of traces we finthcomplete TCP connections (5-7%
of the total connections in the UNEace$). We haveexcluded
from our analysisany request oresponse size thawas made
ambiguous bymissing the beginning orend of the TCP con-
nection while retaining data about other unambiguous re-
quest/response exchanges in thk&me connection. Wealso
excludedincomplete connectionfrom resultsconcerning per-
sistent versus non-persistent connections. Waade no at-
tempt, however, teexcludeother connectionsrelated to the
incomplete connectionse(g, those within the sam®p-level

page). This probably has a small effect on results for the num-
ber of exchanges in persistent connections or in characteriza-
tions that depend on identifying top-level or embedded objects.

To summarize, in the absence mpelining, the methodology

produces accurate results for TCP connection-level characteriza

tions. For making inferences about the web that relyclassi-

fying request/response exchangesbatonging to top-level or
embeddedbjects, there is greater uncertainty (arisingostly

from cachinganduser/browselinteractions). Additional study
is needed to evaluate the impact of these effects.

9. Summary and Conclusions

By any measureweb traffic is the single largestidentifiable
consumer of bandwidth on thieternet. A contemporaneous

8 The analysigools were designed for aimple one-pass processing of
segments with nanternal stack to save segments for analysiseur-
dering. A more sophisticated stack-based program couldvdéalthese
situations.

9 We found about 20% of the connections in the NLANR traces to be
incomplete because of the short (90 second) trace durations.
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characterization ofveb traffic is thereforeimportant for driv-
ing network simulationsand live testing of networkcompo-
nents such as congestion control mechanisms. Whégious
models of web traffic have been presented in the literature, it is
important to continually re-populate theseodels with new
data and update the models to account foreth@ution of pro-
tocols andtheir use. We demonstrate thee of alightweight
measuremeninethodology for gathering thesedata based on
capturing only TCP packet headers flowing from servers to
clients. The method balances the tradeoff between ensuring the
privacy of usersand gathering sufficientdata to capture the
HTTP protocol dynamics. We have developed a sufficient set of
@ols for processing multi-gigabytetcpdump files to create
Istributions of the major structural elements ofHITP con-
nection. Wehave conducted two measurement studiesIDIP
traffic arriving at the ingress router on thiNC campus during
September and October in 1999 and 2000. We also compare our
traces to set of similar (but smaller) tracesjuired byNLANR
during the same periods as our traces.

From theanalysis ofour trace dataand the NLANR data, we
draw a number of conclusions about theolving nature of web
traffic, the use ofthe web, the structure ofeb pagesand the
organization of web servers that provide thedntent, and the
use of packet tracing as a method of understanding the dynam-
ics of web traffic. From a methodology standpoint, we conclude
that a substantialand detailed analysis of HTTP re-
quest/response exchanges is possible given tmdy TCP/IP
headers of packets sent from servergltents. Given only a
unidirectional trace, onean discerntransport protocolphe-
nomenaandthe effects otigher-level protocolusage such as
the use of persistent HTTP connections, as welgsication-
level phenomenauch as the number embeddedobjects per
web pageandthe distribution of servers delivering thison-
tent. We believe that future traces of web traffic mustdesid-
erably longer (on therder of hours) in order tdully capture

the tail of the distributionfor measures such as the size of re-
sponses from servers to clients.

From a protocol usage standpoint, we observed that 15% of all
the TCP connections carryingHTTP request/response ex-
changesare persistent inthe sense that they actually carry
more than one request/responsgchange. These persistent
connectionsdeliver 40-50% of all theweb objects requested
and these objects accouribr approximately 40% of all the
bytes transferred. Thus, although the fractioncohnections
that are persistent is small, their use represents a 50% reduction
in the total number o CP connectionsrequired todeliver web
content (compared to a similaenvironment inwhich persis-

fent connections are not used).

From an analysis of HTTP responses we see that 65% of all web
pages are constructed entirely by responsdsom a single
server while 35% of the pageesquestedreceive contentfrom
two or more servers. Close to 70% of the consecutiyelevel
page references go to an IP addrdsst is different from the
address used for thgrevious top-level pageeferencepossibly
representing the impact of largeganizations managintheir
web sites with a “server farm” for loduhlancing [29]. Walso
see an increase in the number of embedded objectsgigpage
but a decrease in frequently occurrisgges. This ispossibly
due to the pervasive use of “banreds” andcons to decorate
pages [29]. Overall the number bytes transferred taleliver
embedded objects is increasing.



Overall we see a&light decrease in the frequentlgccurring
sizes of response objechuit a markedncrease in the size of
the largest objects transferretihe largest 15% of objecsizes
account for 80% of the bytes transferfedm servers. From an
analysis of HTTP requests we seevel uses ofweb requests to
implement applicationssuch as “webemail” that result in a
shift in the distribution ofrequestsizes because filearebeing
transferred €.g, email attachments) in the context of TP
request. This also gives rise tdTTP request/response ex-
changes in which the request is orders of magnitude |ahgar
the corresponding response.
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