Multi Fractal Analysis

Led by Steve Marron, 5/5/00, 5/12/00

Main idea: c.d.f.s of "bursty" processes will have:

Show ConsCasc\EGConsCasc2v2d1.ps

- more steep bits "than usual"
- more flat bits "than usual"

How to quantify this?

Fractal Index

Index "steepness of c.d.f.", using α

On scale of:

- α < 1 \Leftrightarrow "really steep"
- $\alpha = 1 \iff$ "steep-flat at random"
- $\alpha > 1 \iff$ "really (close to) flat"
- $\alpha = \infty \iff$ "exactly flat"

Multifractal Spectrum

Idea: for each α ,

How many bits have steepness α ?

Math's get complicated (fractal dim'n),

but think "relatively".

Toy Example

E.g. 1: White Noise

Show mfeg21p1d1.ps

MultiFractal Spectrum:

- biggest for $\alpha \approx 1$
- "falls away" for larger α
- "falls away" for smaller α
- sensible for "usual random c.d.f."

1. Start with partition function

$$S^{(k)}(q) = \sum_{i} |X_{i}^{(k)}|^{q}$$

- 2. Find slopes , $\tau(q)$ on log-log scale by fitting a line (to "straight" part)
 - a. need to "truncate" (but where?)
 - b. use "robust repeated median", to "make automatic"

Show MedLinRegT20.ps and mfeg21p2d1.ps

3. Take Legendre transform:

$$MFS(\alpha) = \min_{q} (q\alpha - \tau(q))$$

More Toy Examples

E.g. 2: Cons. Casc., Unif(0,1) Gen'd

Show ConsCasc\EGConsCasc1.ps & ConsCasc\EGConsCasc2v1d1.ps and mfeg21p2d6.ps

- MFS much "broader"
- i.e. wider array of "flats and steeps"
- MFS hits 1 at $\alpha \approx 1.37$
- i.e. "most common" is that flat bit
- robust linear fit works

More Toy Examples

E.g. 3: C. C., Unif(0.25,0.75) Gen'd

Show mfeg21p2d7.ps

- MFS "less spread"
- MFS "more spread" than for white noise.

E.g. 4: C. C., Bernoulli(0.2-0.8) Gen'd

Show mfeg21p2d8.ps

- MFS again "quite spread"
- MFS max'd at large $\alpha \approx 1.31$

More Toy Examples

E.g. 5: C. C., Ber(0.45-0.55) Gen'd

Show mfeg21p2d9.ps

- MFS very similar to white noise

E.g. 6: Fractional Brownian Motions Hurst Parameter H = 0.5, 0.7, 0.9, 1

Show mfeg21p2d2.ps, mfeg21p2d3.ps, mfeg21p2d4.ps, and mfeg21p2d5.ps

- MFS gets "slight larger on right"
- MFS very similar to white noise
- Really different from CC's

UNC Main Link Data

Packet Counts per Unit Time: (on scale m = 0.003 sec)

Show UncLinkData\UncLinkData2p41d1.ps and UncLinkData2p41d2.ps

- MFS consistent with Fractional Brownian Motion
- Predicted because of "large aggregation"

Bytes per Unit Time:

Show UncLinkData\UncLinkData2p42d1.ps and UncLinkData2p42d2.ps

- similar lessons

UNC Session Data

Show UNCSessionData/ CombineSessionData1p1.pdf

Time Interpolated View:

Show ConsCasc/EGConsCasc1int.ps and UNCSessionData/CombineSessionData1p14.pdf

- MFS suggests multi-fractal struct.
- MFS drops on right: few flats
- MFS high on left: many steeps
- max α ≈1 driven by "regularity of flat bits"?
- max MFS << 1, because many "truly flat" bits
- Robust linear fits work well? (Rolf is happy...)

UNC Session Data

Size Interpolated View

Show ConsCasc/EGConsCasc1int.ps and UNCSessionData/CombineSessionData1p15.pdf

- general trend in MFS is reversed (theoretically predicted)
- is MFS "looks more quadratic", related to "inverse CC gives better visual fit"???
- max α is consistently >> 1.
- max MFS = 1 (expected)
- Both time and size interpolated contain "useful information"
- Robust linear fits work well?

Big Picture Summary of MFA

- 1. Main Link Data
 - "Monofractal" (~ WN, FBM)
 - Expected from aggregation

- 2. Session Data
 - "Multfractal", mult'ive not additive
 - Size Interp. & Time Interp. are both useful

3. Look at data "in between"???