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Abstract

A stochastic model for the detailed structure of individual internet
session traces is proposed. The model combines multiplicative“cascading”
ideas with an on-o¤ process structure. A parameter estimation method
is developed. This produces simulated traces with the same type of
qualitative features as real traces. The estimated parameters are proposed
as “shape summary statistics” for characterizing individual traces. It is
also seen that the cascaded on o¤ process provides a better individual
connection model than conservative cascades.

1 Introduction
A TCP connection trace is a plot of its cumulative number of byes transmitted,
as a function of time. The population of such traces is very diverse. TCP
tra¢c on a link is a superposition of many such connections. Figure 1 gives
an impression of the diversity of the population of traces, by showing some
examples, collected from the link connecting a university to its Internet service
provider. These traces are records of the packets ‡owing from web servers to
web browsers.
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Figure 1: TCP connection traces (some only partial for easy comparison),
showing cumulative transmission as a function of time. This illustrates the

diversity of this population.

The goal of this paper is to develop a stochastic model for such traces. More
precisely we want to model the arrival process of packets in a TCP connection
as observed at some arbitrary link in the Internet. We approach this problem
at the individual connection level, meaning that given a trace (e.g. one of those
shown in Figure 1) we aim to construct a model which produces qualitatively
similar realizations. For di¤erent approaches to this problem, see Melamed and
Sengupta (1992), Garrett and Willinger (1994), Leland, et. al. (1994), Will-
inger, et. al. (1995), Melamed (1997), Robert and Leboudec (1997), Willinger,
Taqqu and Sherman (1997), Riedi, Crouse and Ribeiro (1999) and Sahinoglu
and Tekinay (1999). The wide variety of shapes in the population of traces,
e.g. Figure 1, is intended to be modeled via di¤ering parameter values. In
particular, parameter estimates for individual connections are viewed as trace
summary statistics.

There are many potential approaches to construction of summary statistics.
To help guide the choice among them, we suggest a list of criteria:

1. Reconstructions based on the summaries should “look qualitatively right”.

2. Traces should aggregate correctly, meaning that when they are aggre-
gated, the result should have the long range dependence and multifractal
properties that have been observed in real tra¢c ‡ows.

3. Allow straightforward queueing theory analysis, i.e. admit tractable cal-
culations for predicting network demands.
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4. Make physical sense, i.e. be explainable by driving forces of the type that
is usual in Internet tra¢c.

An added bene…t of getting the connection by connection structure right, is
that our model could provide a useful building block for aggregation into a full
scale simulation of Internet tra¢c, and for queueing theory analysis to predict
future network demands.

Our basic model is developed in Section 2. Analysis of several properties
of the model is done in Section 3. Parameter estimation is explored in Section
4. In Section 5 we show that both our model, and our parameter estimation
method, give good performance, in the sense that traces simulated from the
estimated model have very similar visual characteristics to the original trace.
These simulations motivate some extensions and variation on our model, which
are discussed in Section 7. In Section 6 we show why the Conservative Cascade
model gives less e¤ective simulated versions of TCP connection traces.

2 Cascaded On-O¤ Model
The model proposed here is based on the idea that at most of the core (thus
high capacity) Internet links, each packet is transmitted as a single fast burst.
Thus for the packets in a given connection, the time period during which a single
packet is transmitted is called the “on time”, and these are quite homogeneous
(in particular on times are proportional to packet sizes). On the other hand, the
“o¤ times”, i.e. the periods between packets for the given connection are very
diverse, and can frequently be orders of magnitude di¤erent. Some causes of this
include TCP’s windowing, congestion control, and loss recovery mechanisms.

Such diverse o¤ times can be generated in a simple way, by starting with a
set of independent standard On-O¤ processes, X1 (t) ; :::;Xn (t), where the ith
process on times are exponentially distributed with rate (i.e. 1/mean) parame-
ter 2i¡1¸, and the o¤ times ore exponentially distributed with rate 2i¡1¹. More
precisely, let fXn(t) : t ¸ 0; n = 1; 2; 3:::g be a sequence of independent station-
ary Continuous Time Markov Chains (CTMC) on the state space f0; 1g with
rate matrix

A =
·

¡2n¡1¹ 2n¡1¹
2n¡1¸ ¡2n¡1¸

¸
:

Our physical view of these processes is that they represent various “levels”
or “scales” at which TCP tra¢c can be delayed, discussed in detail below. The
overall ‡ow is in the on state only when all of the components (i.e. the processes
at each level) are on. A simple combination with this property is the product.
In particular, a process with very heterogeneous o¤ times is generated as:

Yn(t) =
nY

i=1

Xi(t); t ¸ 0; n = 1; 2; 3; :::
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Since multiplication means the zero state is achieved more and more often for
larger n, a sensible normalization is to rescale to maintain a constant (over n)
overall expected rate:

Zn(t) = m
µ

¸ + ¹
¹

¶n

Yn(t); t ¸ 0; n = 1; 2; 3; :::

Here m is the long term rate at which data are transferred. Figure 2 gives an
indication of how the normalized product, Zn(t), gives the desired properties.
Figures 2a, b and c show respective realizations of the processes X1, X2 and
X3. The normalized products Z1, Z2 and Z3 are shown in Figure 2d. Note
that for larger n, the constant height of Zn is much larger, as needed to keep
the expected rate constant. Figure 2e shows the cumulatives corresponding to
the intensities in Figure 2d. For larger n, these are steeper during the on time,
and the ‡at o¤ times are longer, and also are very diverse.
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Figure 2: Toy Example showing how multiplying On-O¤ processes produces
diverse o¤ times. Figures 2a, b and c show one realization of X1, X2 and X3
respectively. Their normalized products, Z1, Z2 and Z3 are shown in Figure

2d, and the corresponding cumulatives in Figure 2e.

These levels appearing in our process have physical interpretations in terms
of the delays encountered by TCP tra¢c. The …nest scale component, modeled
by the largest n and visually represented here as Figure 2c, models the the
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spacings between individual packet transmissions determined by hardware and
software latencies, etc. The next scale, represented here as Figure 2b, is a
crude model for the TCP windowing and congestion control. The next scale,
e.g. Figure 2a, could be capturing phenomena such as server induced latencies.
Figure 2 doesn’t allow it, but we intend to include further scales of occasional
delays, including long o¤ times generated by the actions of various Internet
switches and routers, for example via packet loss from bu¤er over‡ow.

Again the key idea is that since the resulting tra¢c is in the on state only
when all of the model components are on, it is natural to combine component
e¤ects by multiplying the processes Xi (t). An issue is the choice of scaling
accross levels, our factor of 2i¡1 in the matrix A. We are suggesting this as
only a crude …rst attempt, and believe this choice could be substantially re…ned.

Related models are proposed in Misra and Gong (1998) and Mannersalo,
Norros, and Riedi (1999), that use products of stochastic processes to produce
multifractal models of tra¢c. They start with n stationary, unit mean, non-
negative real-valued stochastic processes and study their product. In particular
they study the case where the factors are just time-scale changed versions of a
single stochastic process. Their main emphasis is on the study of the convergence
of the product as the number of factors goes to in…nity. In particular they apply
the results to a two-state CTMC, which is very closely related to ours. Since they
assume that the mean rate is 1 for each factor, they do not need to explictly scale
the peak rate as we do in our model. Also, they do not consider the estimation
aspects that we investigate in Sections 4 and 5. Our estimation procedure relates
the cascaded on-o¤ model to the physical trace in a less ambiguous fashion that
makes our model more appealing than many others.

3 Analysis
In this section we provide mathematical analysis of the cascaded on-o¤ rate pro-
cess Zn = fZn(t); t ¸ 0g de…ned in the previous section. First of all note that the
state space of Zn is f0;m(¸+¹

¹ )ng. Furthermore if the processes Xi = fXi(t); t ¸
0g (i = 1; 2; :::; n)are taken to be stationary, the Zn process is also stationary. We
construct an n-dimensional process Xn(t) = f(X1(t); X2(t); :::;Xn(t)); t ¸ 0g to
study the properties of the Zn process in more detail below. The Xn process
itself is a CTMC with state space Sn = f0; 1gn. Let Q be its generator matrix.

Example 1 The X2 process is a CTMC on state space S2 = f(0; 0); (0; 1); (1; 0); (1; 1)g
and has the following generator matrix:

Q =

2
664

¡3¹ 2¹ ¹ 0
2¸ ¡(¹ + 2¸) 0 ¹
¸ 0 ¡(¸ + 2¹) 2¹
0 ¸ 2¸ ¡3¸

3
775 :
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We shall make use of the fact that Yn and Zn are alternating renewal pro-
cesses with independent and identically distributed (iid) on times and iid o¤
times. (See Kulkarni (1995) Chapter 8 for de…nitions).

3.1 The On Times
The theorem below describes the on times in the Zn process (i.e. intervals where
the Zn process takes the value m(¸+¹

¹ )n).

Theorem 2 The successive on times in the Zn process are iid random variables
with common cumulative distribution function

Fon(t) = 1 ¡ expf¡(2n ¡ 1)¸tg; t ¸ 0; (1)

and mean

¿on =
1

(2n ¡ 1)¸
: (2)

Proof: Let e be a n-vector of all ones. From the de…nition it is clear that
the Zn process is “on” if and only if the Xn process is in state e. The rate at
which it exits state e is

¡Q(e; e) = ¸ + 2¸ + 4¸ + ::: + 2n¡1¸ = (2n ¡ 1)¸:

Hence the on times are exponential random variables with parameter (2n ¡1)¸.
This yields the cumulative distribution function and the mean given in Eq. 1
and 2. The iid nature of successive on times follows since Xn is a CTMC. ¤

3.2 The Mean O¤ Times
The next theorem states the mean of the o¤ times in the Zn process (i. e.,
intervals where Zn process is zero), which is same as that of the o¤ times in the
Yn process.

Theorem 3 The successive o¤ times in the Zn process are iid with a common
mean

¿off =
(¸+¹

¹ )n ¡ 1
(2n ¡ 1)¸

: (3)

Proof: Note that Yn is an alternating renewal process. From the theory of
renewal processes (see Kulkarni (1995) Theorem 8.23) we get

lim
t!1

PfYn(t) = 1g =
E(On Time)

E(O¤ Time) + E(On Time)
=

¿on

¿off + ¿on
(4)
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where ¿on is given in Eq. 2, and ¿off is to be determined. Using the results
about the limiting distribution of a two-state CTMC (Kulkarni (1995), Example
6.29), we get

lim
t!1

PfYn(t) = 1g = lim
t!1

nY

i=1

PfXi(t) = 1g

=
nY

i=1

2i¡1¹
2i¡1¸ + 2i¡1¹

= (
¹

¸ + ¹
)n: (5)

Using Eqs. 2 and 5 in Eq. 4, we can solve for ¿off , which yields Eq. 3.¤
Computing the variance of the o¤ times is a lot harder, and we need the Laplace
Stieltjes Transform (LST) of the o¤ time distribution to compute it. We do this
in the next subsection.

3.3 The LST of the O¤ Times.
Let

H(t) = P (Yn(t) = 1jYn(0) = 1)
= P (Xj(t) = 1; j = 1; 2; :::; njXj(0) = 1; j = 1; 2; :::; n)

=
µ

¹
¸ + ¹

¶n nY

j=1

³
1 + ½e¡2j¡1(¸+¹)t

´
; (6)

where ½ = ¸=¹. De…ne the LST of H as

~H(s) =
Z 1

0
e¡stdH(t):

The next theorem gives the LST of Foff in terms of the LST of H.

Theorem 4 The LST of the o¤ times is given by

Á(s) =
Z 1

0
e¡stdFoff(t) = 1 ¡ s

¸
1 ¡ ~H(s)

~H(s)
: (7)

Proof: Recall that fYn(t); t ¸ 0g is an alternating renewal process, with
transient distribution given by H(t) of Equation 6. The on times are exponen-
tial, while the o¤ time distribution is desired. The result follows by following
the same steps as in Example 8.17, page 425, of Kulkarni (1995).¤

The LST can be used to compute the second moment (and hence the vari-
ance) of the o¤-times in an e¢cient fashion, as discussed in the next subsection.
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3.4 Second Moment of the O¤-times
The second moment of the o¤ times is given by

s2
off = E((o¤ time)2) =

d2

ds2 Á(s)js = 0:

This can be evaluated analytically, and simpli…ed after several applications of
the L’Hopital’s rule to obtain the following representation: Let S = f1; 2; :::; ng.
For A µ S de…ne

r(A) =
X

i2A

2i¡1:

Then

s2
off =

2
¸¹

(1 + ½)n¡1

r(S)

nX

i=1

[
X

AµS:jAj=i

1
r(A)

] ½i:

This can also be written as

s2
off =

2
¸¹

(1 + ½)n¡1

r(S)

X

AµS;A 6=Á

½jAj

r(A)
:

Although there are 2n ¡ 1 terms in the sum, this is more e¢cient than dealing
with a matrix of size 2n.

3.5 The Distribution of the O¤ Times
Computing the distribution of the o¤ times is an onerous task. First we need
some notation. Let ei be an n-vector whose ith coordinate is zero and all other
coordinates are 1 (i = 1; 2; :::; n). Let ® = [®(a)]a2Sn be a row vector of size 2n,
de…ned as follows:

®(a) =
½

2i¡1=(2n ¡ 1) if a = ei
0 otherwise:

Let Q̂ be a modi…ed matrix obtained from Q by deleting the row and column
corresponding to the state e. Let ®̂ be the row vector obtained from ® by delet-
ing the element corresponding to the state e. These constructions are explained
by an example below:

Example 5 The state space and the generator matrix of the X2 process is de-
scribed in Example 1. The Q̂ matrix is as given below:

Q̂ =

2
4

¡3¹ 2¹ ¹
2¸ ¡(¹ + 2¸) 0
¸ 0 ¡(¸ + 2¹)

3
5 :
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The ® vector is given by

® = [0
1
3

2
3

0]

and the ®̂ vector is given by

®̂ = [0
1
3

2
3
]:

The next theorem describes the distribution of the o¤ times in the Zn pro-
cess.

Theorem 6 The successive o¤ times in the Zn process are iid with common
cumulative distribution function

Foff (t) = 1 ¡ ®̂ exp(Q̂t)1; (8)

(where 1 is a column vector of all ones).

Proof: We shall use the fact that an o¤ time starts when the Xn process
leaves state e and terminates when it re-enters the state e. When the Xn pro-
cess leaves state e, it enters state ei with probability ®(ei) = 2i¡1=(2n ¡ 1).
Thus the distribution of the Xn process when an o¤-time starts is given by
®: The o¤-time is thus the …rst passage time of the CTMC Xn into state e if
its initial distribution is given by ®. Hence (see Kulkarni (1995), Section 6.7)
the o¤-time is a phase type random variable with parameters (®̂; Q̂), and its
cumulative distribution function is as given (Kulkarni (1995), Theorem 6.22) in
Eq. 8 above. The successive o¤ times are iid since Xn is a CTMC. ¤

3.6 The Autocovariance Function
Assume that Xi (i = 1; 2; :::; n) are stationary, so that Zn is also stationary.
In this section we compute the autocovariance function of the Zn process. The
main result is given in the following theorem.

Theorem 7

Cov(Zn(t); Zn(0)) = m2

"
nY

i=1

³
1 + ½e¡2i¡1(¸+¹)t

´
¡ 1

#
: (9)

Proof: We know that (See Kulkarni (1995), equation 6.38)

P (Xi(t) = 1jXi(0) = 1) =
¹

¸ + ¹
[1 +

¸
¹

e¡2i¡1(¸+¹)t]; t ¸ 0:
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Now,

E(Zn(t)Zn(0)) = m2(
¸ + ¹

¹
)2nE(

nY

i=1

Xi(t)
nY

i=1

Xi(0))

= m2(
¸ + ¹

¹
)2n

nY

i=1

E(Xi(t)Xi(0))

= m2(
¸ + ¹

¹
)2n

nY

i=1

P (Xi(t) = 1jXi(0) = 1)
¹

¸ + ¹

= m2
nY

i=1

[1 +
¸
¹

e¡2i¡1(¸+¹)t]: (10)

Using stationarity we get

E(Zn(t))E(Zn(0)) = m2(
¸ + ¹

¹
)2nE(

nY

i=1

Xi(t))E(
nY

i=1

Xi(0))

= m2(
¸ + ¹

¹
)2n(

¹
¸ + ¹

)2n

= m2: (11)

Using Eqs. 10 and 11, we get Eq. 9.¤

Thus the autocovariance dies o¤ exponentially, dominated by the exponential
decay rate of ¸ + ¹. Thus, clearly the process will not display long range
dependence!

3.7 Queueing Analysis
Suppose the input to a queue is modeled by a cascaded on-o¤ process Zn with
mean rate m and peak rate rn = m

³
¸+¹

¹

´n
. The bu¤er size is in…nity, and the

output from the queue is at a constant rate c whenever the bu¤er is non-empty.
Let W (t) be the bu¤er content at time t. The dynamics of the bu¤er content
process fW (t); t ¸ 0g are given by

dW (t)
dt

=
½

Zn(t) ¡ c if W (t) > 0,
(Zn(t) ¡ c)+ if W (t) = 0.

If m ¸ c the queue is unstable and the bu¤er content is in…nity in the limit
as t ! 1. If rn · c, the bu¤er content is always zero. Hence we consider
the case m < c < rn, where the bu¤er content process has a bona…de limiting
distribution (See Kulkarni(1997)). Since the input is on-o¤ with exponential on
times and general o¤ times, the tail behavior of the bu¤er content process has
been well studied in the literature. For example, Gautam et al. (1999) study
a ‡uid queue driven by a semi-Markov process. We apply their results to our
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case ( a two-state semi-Markov process) and state the results below.

Let Á(s) be the LST (Laplace Stieltjes Transform) of the o¤ time as given
in Equation 7. De…ne ¸n = (2n ¡ 1)¸ and let ´ be the smallest solution to

Á(´c) = 1 ¡ ´(rn ¡ c)
¸n

:

Then, from the results of Gautam et al. we get

Theorem 8 Suppose m < c < rn. Then

lim
t!1

P (W (t) > x) · e¡´x:

This provides the exponential decay bound on the tail of the steady state
bu¤er content. Thus the tra¢c losses at a …nite bu¤er of size B can be approx-
imated by e¡´B.

3.8 Limiting Behavior: Preliminary Results
A question of interest is: what happens to the Zn process as n ! 1: We have
not studied this question fully as yet, but have a preliminary understanding
summarized in the theorem below.

Theorem 9

lim
n!1

¿on = 0; (12)

lim
n!1

¿off =

8
<
:

0 if ¸ < ¹;
1 if ¸ > ¹;
1=¸ if ¸ = ¹:

(13)

lim
n!1

¿off

¿on
= 1: (14)

Proof: Follows from the explicit expressions for ¿on and ¿off :¤

Thus the behavior of the mean o¤ time depends on the relative magnitudes
of ¸ and ¹ in a critical fashion. We expect that the limiting behavior of the Zn
process will also depend on this in a similar fashion.

3.9 Products of On-o¤ Processes: Related Work
Recently we came across a preprint of a paper by Mannersalo et al. (1999) that
talks about using products of stochastic processes to produce multifractal mod-
els of tra¢c. They start with n stationary, unit mean, non-negative real-valued
stochastic processes and study their product. In particular they study the case
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where the factors are just time-scale changed versions of a single stochastic pro-
cess. The main emphasis in this paper is on the study of the convergence of the
product as the number of factors goes to in…nity. In particular they apply the
results to a two-state CTMC, which is very closely related to ours. Since they
assume that the mean rate is 1 for each factor, they do not need to explictly
scale the peak rate as we do in our model. Also, they do not consider the estima-
tion aspects that we consider in detail here. Our estimation procedure relates
the cascaded on-o¤ model to the physical trace in an unambiguous fashion that
makes the model a closer …t to reality than many others.

It is followed by a paper by Carlsson an Fiedler (2000) that does the queue-
ing analysis for such tra¢c models. Although they don’t explicitly mention it,
they assume that the factors are independent two-state CTMCs. They do the
explicit queueing analysis by using the 2n £ 2n matrix of the n-dimensional
process to obtain exact stationary pdf of the bu¤er content process using well
established results on Markov modulated ‡uid queues. We only report the ex-
ponential bound that is su¢cient in many instances.

4 Parameter Estimation
In this section, we propose estimates of the model parameters ¸, ¹ and n, based
on a single TCP connection trace. Successful estimation should give a …tted
stochastic process whose realizations share the qualitative features of the trace.

More precisely, the estimation is based on the following data:

1. The peak rate rpeak is the true transmission rate at the location where
the measurements are made, in bits per second. In all examples in
this paper, measurement was made on an OC-3 link, so rpeak = 1:55 £
108(bits= sec)=(8bits=byte).

2. N = total number of packets in the trace

3. Ti = time stamp of the ith packet, in secs. (i = 1; 2; :::; N)

4. Si = size of the ith packet, in bytes. (i = 1; 2; :::;N)

Figure 3 shows how these pieces of data are used to construct sets of sample
on times and o¤ times to use in the estimation. The raw data is a set of
packet time stamps, and cumulative sizes (i.e. the total size number of bytes
transmitted up to the given time), which are shown as symbols in Figure 3.
The simplest version of the cumulative is shown as the medium thickness broken
line, simple linear interpolation. A re…ned version of the cumulative, shown
as the medium solid line, takes the peak rate (generally much faster than the
rate represented by the slope of the linear interpolant) into account, alternating
constant o¤ times, with on times at the rate rpeak. Note that rpeak, together
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with the time stamps and packet sizes, determines the respective on (shown as
the thick solid line) and o¤ (shown as the thick dashed line) times.

Figure 3
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Figure 3: Zoomed in plot of a TCP connection trace, showing raw data, and
how the peak rate is used to determines on and o¤ times.

Here are the proposed steps for parameter estimation based on simple Method
of Moment ideas. First for a …xed value of the level parameter n:

1. Get the total size right: i.e. estimate the overall mean rate rmean of
transmission for the given connection by

r̂mean =
P

i Si

TN
=

total size
total time

:

2. Make the jumps right: i.e. estimate the mean on time ¿on by

¿̂on =
P

i Si

Nrpeak
=

r̂mean

rpeak
¢ TN

N
;

which is the average of the on times shown as the thick solid line in Figure
3.

3. Estimate the mean o¤ time ¿off by

¿̂off =
TN

N
¡ ¿̂on;

which is the average of the o¤ times shown as the thick dashed line in
Figure 3.
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4. Solve the mean equations (2) and (3) to get estimates of ¸ and ¹:

^̧n =
1

¿̂on(2n ¡ 1)
;

¹̂n =
^̧nh

¿̂off
¿̂on

+ 1
i1=n

¡ 1
:

Using this method, for several choices of the level n, on some sample traces
gave good results (in terms of qualitative appearance), however di¤erent values
of n were needed. Hence it seems important to also estimate the parameter
n. Again we appeal to a Method of Moments approach, focussing now on
2nd moments, i.e. variances (since the …rst moments have already been used).
Since the on time distribution is exponential, the variance is determined by the
…rst moment ¿on, and contains no additional parameter estimation information.
But some investigation of the o¤ time distribution showed that n is directly
related to the variance. There does not appear to be a computationally useful
closed form for the o¤ time variance, but a numerical version, based on (??) is
straighforward to compute. This took a reasonable to large amount of time (up
to an hour on a 400 MHz PC) for the values that we encountered, n = 1; 2; :::; 12.
It seems likely that this computation can be speeded up very considerably, but
we have not attempted this yet.

To estimate n, we propose considering a grid of n values. For each n,
estimate ^̧n and ¹̂n as above. Then calculate the theoretical o¤ time variances
¾2

off

³
^̧n; ¹̂n; n

´
, n = 1; 2; ::: Choose n which makes this closest to the sample

o¤ time variance b¾2
off . The e¤ectiveness of this method is demonstrated in the

next section.

5 Simulation Results
This section shows the e¤ectiveness of the estimation method developed in Sec-
tion 4. For a given real trace, the parameters are estimated, and the e¤ective-
ness is assessed in terms of visual impression.

Figure 4 shows the full estimation process. Figure 4a is the original raw data
trace, showing both TCP congestion control and windowing e¤ects, and also two
long delays apparently caused by packet loss and timeout before retransmission
of the lost data. The x-axis in Figure 4b shows the range of n values considered,
n = 1; :::; 10, and the corresponding estimated values ^̧n, ¹̂n. Figure 4c shows
the corresponding model variance ¾2

off

³
^̧n; ¹̂n; n

´
, as the thick curve, and how

it compares with the o¤ time sample variance, b¾2
off . These are closest at n = 9,

as indicated by the vertical dashed line (also shown in Figure 4b). Figure 4d
shows 5 realizations from the estimated model. Note that these do a good job
of reproducing the visual impression of the raw data trace, with about the right
number and sizes of ‡at spots.

14



0.3 0.4 0.5 0.6 0.7
0

5

10

x 104 Figure 4a

Time (sec)

C
um

. T
ra

ns
. (

by
te

s)

2 4 6 8 10
1

2

3

4

Figure 4b

Cascade Level, n

lo
g 10

(p
ar

am
et

er
) λ(n)

µ(n)

2 4 6 8 10
0

0.5

1

1.5
x 10-3 Figure 4c

Cascade Level, n

O
ff 

T
im

e 
V

ar
ia

nc
e

Sample Variance

0.3 0.4 0.5 0.6 0.7
0

5

10

x 104 Figure 4d

Time (sec)

C
um

. T
ra

ns
. (

by
te

s)

n = 9
λ = 25.8915
µ = 35.6891

Figure 4: Raw data trace is in Figure 4a, with the estimation process
illustrated in Figures 4b and 4c. Figure 4d shows 5 simulated traces from the

model with estimated parameters, showing similar qualitative structure.

Another example is shown in Figure 5. This time the estimation parts are
omitted to save space (these parts look similar to Figures 4b and 4c), and only
the raw data is shown in Figure 5a, and the simulated realizations from the
estimated model are shown in Figure 5b. Once again the visual impression of
the simulated traces is similar to the real one.
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Figure 5: Another trace, Figure 5a, together with 5 traces simulated from the
estimated model. This again shows good visual …t of the model.

We considered several other examples, where the visual impression was as
good as the above. The worst cases that we observed follow.

Figure 6a shows a real data trace with TCP “slow start” structure. The
simulated traces from the estimated model, shown in Figure 6b, have about the
right numbers and types of ‡at pieces, but they appear in random locations, not
carefully ordered at the beginning, as in the real data trace. Thus slow start is
a trace characteristic that is not well captured in our model.
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Figure 6: Another estimation - simulation example showing that while our
model gives the right number and size of ‡at spots, it does not e¤ectively model

TCP slow start.

The worst …t of our model to a real data trace is shown in Figure 7. This
trace exhibits properties common in automatically refreshed web pages – here
we see approximately equal size bursts of data arriving at regularly spaced times
that are 15 seconds apart.
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Figure 7: The worst case estimation - simulation example that we observed,
where the TCP window is very large, giving a structure that is not e¤ectively

represented by our models.

“Visual impression” is a simple measure of goodness of …t of a model. More
sophisticated measures are based on statistical summaries. An important sta-
tistical summary is the time varying correlation structure. An important, and
perhaps questionable, assumption of our Cascaded On O¤ model is that the
o¤ times are independent. This is investigated in Figure 8, which shows the
autocorrelation function of the time series of o¤ times from the trace shown in
Figure 4a, as the thick solid line.
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Figure 9: Sample autocorrelation function for the o¤ time series, from the
trace in Figure 4a, shown as the solid line. The circles are 100 simulated

autocorrolations from the …t model, to assess the variability.

The autocorrelation function is not identically zero, as expected, because of
sampling variability. The overlaid circles assess whether these departures from
zero are statistically signi…cant. They are the sample autocorrelations based on
100 simulated draws from the …t distribution, illustrated in Figure 4d. These
show that the solid curve is well within the expected variability, and thus the
our independent model holds up well.

We obtained very similar results for most of the other traces we have studied.
Exceptions were all caused by periodicities. For example the repeated bursts
of data in the trace of Figure 7a gave substantial autocorrelation. A di¤erent
type of non-zero autocorrelation was caused by TCP windowing e¤ects.

6 Why Not Conservative Cascades?
In this section, conservative cascades are investigated as an alternative model
for generating simulated traces. See for example Section 1.3.2 of Riedi and Will-
inger (1998) for a careful description of the construction. Figure 9 illustrates
the main idea.
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Figure 9: Toy example illustrating the conservative cascade construction.
Figure 9a shows the rate function r1 and Figure 9b shows the corresponding
cumulative for n = 1. Figure 9c shows the rate function r2 and Figure 9d

shows the corresponding cumulative for n = 2.

The conservative cascade construction is iterative, with two such steps shown
in Figure 9. The curves on the left side are“rate functions” Rn (t) de…ned
on [0; 1], with the corresponding “cumulatives” shown on the right side. A
simple view is that at each level the existing subintervals are split in half, and
the centerpoint of the cumulative is moved vertically by a random amount (as
shown in Figure 9d). At the level n this results in intervals with endpoints
at the dyadic points i

2n , i = 1; 2; 3; :::; 2n ¡ 1, and with piecewise jumps in
the cumulatives of the form: M0M1

i1M
2
i2 ¢ ¢ ¢Mn

in
, where the “generators of the

cascade” are random variables
n

M j
i : i = 0; 2; :::; 2j ¡ 2; j = 1; 2; :::; n

o
; (15)

that are assumed to be independent. As shown in Riedi and Willinger (1999),
the resulting stochastic process has some multifractal properties.

While there is a lot of ‡exibility in terms of generator distributions, we were
not successful in …nding ones that gave simulated traces that looked visually
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similar to those in Figure 1. To understand why, we “backsolved for the genera-
tors”, and then did a statistical analysis. In particular, for n ¼ log2 (# packets),
we interpolate the real data trace to the dyadic grid

© i
2n : i = 0; 1; :::; 2nª

. Now
the mass assigned to the subinterval indexed by k (even) is M0M1

i1M
2
i2 ¢ ¢ ¢Mn

k
and the mass for the next subinterval indexed by k + 1 is M0M1

i1M
2
i2 ¢ ¢ ¢Mn

k+1.
The ratio of these masses is Rn

k = Mn
k

Mn
k+1

. Thus solving the mass conservation

equation Mn
k +Mn

k+1 = 1 gives Mn
k = Rn

k
Rn

k+1 and Mn
k+1 = 1

Rn
k +1 . This procedure

is quickly and simply iterated back through the entire cascade, to give empirical
values of the full set of generators (15).

Figure 9 shows some statistical analysis of the Mn
k , for the TCP connection

trace in Figure 4a. We repeated the analysis for a number of other di¤erent
looking traces, but the main lessons were similar. These were computed using
n = 10, i.e. interpolation was done to a grid of 210 = 1024.
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Figure 10: Statistical analyses of decomposed conservative cascade generators
for trace of Figure 4a. Figure 10a is an order plot of the raw generators.

Figure 10b shows level wise kernel smoothed histograms. Figure 10c show the
levelwise percent inside the interval [0:45; 0:55]. Figure 10d shows the

correlation between level j and j ¡ 1.
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Figure 10a is a graphical display of the M j
i . Only even i are shown because

the even and odd pairs sum to 1, so including the odd pairs does not add
useful information (they would just be mirror images of the shown points). The
numerical value appears on the horizontal axis, and a lexicographical ordering
of the M j

i appears on the vertical axis. The level j = 4; :::; 10 (smaller j levels
could be computed, but less than 8 data points does not admit useful analysis
of the type done here) is indicated with di¤erent symbol types. The highest
level values, for j = 10, are shown at the bottom as circles, and they are ordered
depending on the index i. This …lls half the plot, because essentially half of
the full set appear at this level. The next level, j = 9, are shown as triangles,
and occupy the next quarter of the plot, and so on. The symbol types are
connected with the level j in Figure 10c. Figure 10a shows that a very large
number of the M j

i take on the value 0:5, so this should be built into any model
that attempts to reconstruct traces of the type shown in Figure 1.

A more precise view of the level-wise distributions is shown in Figure 10b,
where each curve is a kernel density estimate of the generators at the given level
j. This shows that it would be inappropriate to consider a conservative cascade
model with a generator distribution that is constant across the level j. It also
suggests that some simple level-varying models could be appropriate.

A large part of the level varying structure in Figure 10b is explainable in
terms of the number of M j

i that take on values near 0:5, which is shown in Figure
10c. For each level j = 4; :::; 10, shown on the horizontal axis, the percent of
the Mj

i , for even i = 0; 2; :::; 2j ¡ 2, in the range [0:45; 0:55] are shown. This is
quite large at the high levels, and falls away in a fashion that could be simply
modelled.

These plots suggest ways in which simple, sensible, level-wise conservative
cascade models could be constructed. We tried this, but the simulation results
did not look like the driving traces. In particular, the visual impression was
much worse than the results shown in Section 5.

The main reason for this is shown in Figure 10d. In this graph, again
the level j is on the horizontal axis (again using the same level symbol types),
but this time the across row empirical correlation, ½

³
M j

i ;M j¡1
i=2

´
, based on the

sample of even i = 0; 2; :::; 2j ¡ 2 , between each generator and its “parent” in
the next level, is shown. Note that this is systematically quite large, indicating
a strong positive correlation across levels. The envelope of thin lines provides
a check that this correlation is systematic, and not due to sampling variability.
It shows 100 realizations of the correponding correlations, from the generators
of a simulated cascade.

This correlation is a clear violation of the usual independence assumptions
made for conservative cascades. It seems to be mostly caused by the long (and
also the shorter) ‡at spots in the trace, seen in Figure 4a. The dyadic interpola-
tion slices the ‡at segments in rather arbitrary ways, leading to this dependence.
One could attempt to build across row correlation into the conservative cascade
model, but we view our cascaded on o¤ model as a more natural way to model
the type of structure that is visible in the data.
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Other modi…cations of the conservative cascade idea are also worth consid-
eration. For example we tried applying the cascade construction to the inverse
cumulative function. This corresponds to dyadically interpolating the verti-
cal size axis. Then instead of studying “vertical random shifts at dyadic time
points”, one studies “horizontal random shifts at dyadic size points”. The same
analysis as above was applied, and gave some substantial improvement in visual
quality of simulated traces, however it was still unsatisfactory, especially com-
pared to the cascaded on o¤ model. Again the main problem seems to be that
the conservative cascade model has a rigidity, that makes it poor at modelling
the type of structure present in the data.

Another variation, studied in detail by Dubins, L. E. and Freedman, D. A.
(1967), is to allow both vertical an horizontal perturbations of the cumulative.
This is intuitively attractive, and may also solve some of the problems with con-
ventional conservative cascades. We have not followed this direction, because
it looks less tractable for subsequent queueing theory type analysis than our
cascaded on o¤ model.

7 Possible Extensions and Future Work
Many variations of the construction of our model given in Section 2 are possi-
ble. The above was chosen as the simplest with good visual properties, and is
intended only as a …rst crude approximation.

One point where our model clearly di¤ers from the traces we have studied,
is in the on time distributions. We have modelled this as exponential, but in
the actual data there is a strong tendency for packet sizes to be nearly constant.
This is because common TCP segment sizes are around 1500 bytes. For inves-
tigations at the scale of the analysis in Section 5, this issue is not important
because it does not a¤ect the visual impression, but it could be for other con-
siderations. A simple modi…cation of our model, which could handle this, is to
allow the on times for the component Xn(t) to be constant.

Our model also does a poor job of describing TCP slow start, as shown in
Figure 6. A simple means of handling this is to …t an exponential curve to
the trace (or to a suitably de…ned “beginning part”). Then a deterministic 0-1
factor, with appropriate exponentially decreasing o¤ times, could be added to
the model. VGK: work ”semi Markov” into this?

Also, as shown in Figure 7, our model does not e¤ectively handle peiodicities.
This problem is more challenging, because it requires estimation of the size and
frequency of these varying steps. But if this can be done e¤ectively, then an
appropriate factor could again be added to our model.

As noted in Section 2 our choice of rescaling the rates by a factor of 2 is
completely arbitrary. More generally a scale factor of rn could be used. It
could be worth using a simple parametric form, and doing parameter estimation.

Additional important future work is in the direction of point 2, in Section 1:
correct aggregation. We plan to investigate this by comparing statistical prop-
erties (including long range dependence and fractality measures) of aggregated
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simulated traces, with that of actual aggregate tra¢c.
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