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Abstract

This paper studies tails of the size distribution of Internet data flows and their “heaviness”. Data

analysis motivates the concepts of moderate, far and extreme tails for understanding the richness of

information available in the data. The data analysis also motivates a notion of “variable tail index”, which

leads to a generalization of existing theory for heavy-tail durations leading to long-range dependence.

1 Introduction

Mathematical and simulation modelling of Internet traffic, even at a single location, has proven to be a

surprisingly complex task and has been surrounded by substantial controversy. A simple view of Internet

traffic on any given link is that it is an aggregation of flows where each flow is a set of packets with the

same source and destination IP (Internet Protocol) addresses.

The first models for aggregated Internet traffic were based on standard queueing theory ideas, using

the exponential distribution to model flow durations. These models have the advantage of being tractable

for standard time series and queueing analysis. A number of studies of Internet traffic have suggested

that Internet flows often have heavy tailed duration distributions and that the aggregated traffic exhibits

long-range dependence, see e.g. Paxson (1994), Garrett and Willinger (1994), Paxson and Floyd (1995) and

Crovella and Bestavros (1996). An elegant mathematical theory, see e.g. Mandelbrot (1969), Cox (1984),

Taqqu and Levy (1986) and Heath, Resnick and Samorodnitsky (1998), provides a convincing connection

between heavy tailed durations and long-range dependence.

A common notion of long-range dependence of a stationary time series {Xt} can be expressed in terms
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of the rate of decay of the autocovariance

R(t) = cov(Xs, Xt+s).

In particular, polynomial decay in t, R(t) ∼ t−(α−1) with exponent α − 1 ∈ (0, 1), is typically viewed

as a symptom of long range dependence. This polynomial decay is easily obtained if the cumulative

distribution function of the durations, F , is heavy tailed in the sense that

lim
y→∞

F (y)

y−α
= C, (1)

for some C > 0, where α ∈ (1, 2) is called the tail index, and where F (y) denotes the complementary

cumulative distribution function, F (y) = 1− F (y). See Section 4 for further details.

A convenient conceptual view of this behavior is given in Figure 1. Individual IP flows through a link

are represented as horizontal lines, which start at the time of the first packet, and end at the last. A random

vertical height (jittering, see e.g. pages 121-122 of Cleveland 1993) is used for convenient visual separation.

Their vertical aggregation over any time interval constitutes the full traffic passing through the link during

that interval. The time durations (i.e. lengths) of the flows shown in Figure 1 appear to follow a heavy

tailed distribution in that there are a few very long flows (sometimes termed elephants) and also many very

short flows (sometimes termed mice). If these durations were exponentially distributed with the same mean,

then there would be far more medium size flows, as shown in Figure 2 of Hannig, Marron, Samorodnitsky

and Smith (2001). These elephants cause the aggregated flow to be long-range dependent. In particular,

even at rather widely separated time intervals, there will be some common elephants, resulting in correlation

between the total traffic at those time intervals. The theory relating heavy tailed durations and long-range

dependence is a precise mathematical quantification of this concept.

The data shown in Figure 1 were gathered from IP packet headers, during approximately 40 minutes on

a Sunday morning in 2000 at the main Internet link of the University of North Carolina at Chapel Hill. This

time period was chosen as being off peak because it had relatively light traffic. An IP flow duration is

defined here as the time period between the first and last packets transferred between a given pair of source

and destination IP addresses. For more details on the data collection and processing methods, see Smith,

Hernández-Campos, Jeffay and Ott (2001). To reduce visual boundary effects we consider only those flows

which cross a time window of the central 80% (i.e. 10% is truncated from each end) of the time range. There

were 115,548 such flows, and to avoid overplotting only a random sample of 1000 are shown in Figure 1.

While Figure 1 graphically illustrates the connection between a heavy tailed duration distribution and

long range dependence, a parallel phenomenon has been observed by Crovella and Bestavros (1996) and

Park, Kim, and Crovella (1996), who established links between heavy tailed distributions of the sizes of

files transferred over networks and long-range dependence in the resulting packet-level traffic. Le, Aikat,
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Figure 1: Mice and elephants visualization of IP flows. Shows how heavy-tail durations can lead to long-range

dependence of aggregated traffic.

Jeffay, and Smith (2003) also observed experimentally this same relationship between transferred file sizes

and long-range dependence. This is not surprising since a strong relationship is expected between file sizes

and durations of transfers (e.g. large files require more time to transfer). In this paper we will focus more

on file sizes than on durations, but believe that the main lessons apply to both.

While the framework of heavy tail size or duration distributions leading to long-range dependence appears

complete, more recent work has questioned both the heavy tail distributions (see Downey (2000), and Gong,

Liu, Misra and Towsley (2001)) and also the long-range dependence, (see Cao, Cleveland, Lin and Sun

(2001)). The controversy surrounding the heavy tails is the main topic of the present paper. The second

question has been resolved by appropriate visualization across a wide range of scales by Hannig, Marron and

Riedi (2001).

Downey (2000) suggests that the light tailed log-normal distribution may give a better fit to many

file size distributions than the heavy tailed Pareto. A naive view suggests that this is inconsistent with

the above theory, because heavy tails appear to be critical for long-range dependence. However, Hannig,

Marron, Samorodnitsky and Smith (2001) show that, contrary to previous analysis, log-normal durations

(and presumably also file sizes) are not contradictory to long-range dependence of the aggregated traffic.

Gong, Liu, Misra and Towsley (2001) present a number of important ideas on this topic. First, they

point out that one can never completely determine tail behavior, in the classical asymptotic sense, of a

3



distribution, based only on empirical data. For example, each data set always has a largest data point,

and the underlying distributional behavior beyond that point, and frequently anywhere within an order of

magnitude or more of that point, cannot be reliably determined from the data. This concept motivates

their important idea that distributional properties should really be investigated only over appropriate ranges

found in the data. In particular, any empirical data set will contain very rich information in some regions

(e.g. in the main body of the distribution), and very sparse information in others (e.g. in the tails).

A convincing and useful solution to the statistical problem of understanding the richness of distributional

information from a set of data is the first major goal of this paper. Useful visual tools are applied to

Internet traffic data in Section 2 to give a clear understanding of which distributional aspects are important

underlying structure and which are due to sampling variability. A data set whose size (millions of flows) is

much larger than most of those that have appeared in published papers is analyzed. A naive view of such a

large data set is to believe that the tail is completely understood. But more careful consideration from the

above perspective suggests that the only effect of a larger sample is that the region where we have a clear

understanding of distributional properties becomes larger. However, there is still a region of uncertainty far

enough out in the tails.

A major result of the analysis we present in Section 2 is that the tail of the distribution has some strong

wobbles, of a type not present in the tails of classical distributions such as the log-normal or Pareto. Le,

Aikat, Jeffay, and Smith (2003) observed that similar wobbles exist in both the size and duration distributions

(see their Figures 2, 23, and 24). It is tempting to attribute these wobbles to sampling variability. However,

our statistical analysis and visualization suggests this is false. Deeper confirmation comes from repeating

the analysis for a number of additional empirical data sets collected at different Internet links and at different

times. These not only exhibit the same amount of wobbles, but even wobble exactly the same way in the

same places. This confirms the idea that these wobbles are important underlying distributional phenomena,

and not sampling artifacts.

What causes the wobbles? This question is considered in Section 3. Several previously suggested

distributional concepts are combined to find models which do fit the data (including wobbles) to the degree

possible with the information at hand in an intuitively meaningful way. In particular, it is seen that

mixtures of either 3 log-normals or 3 double Pareto log-normals give an acceptable fit. From a classical

asymptotic tail index viewpoint, these two distributions can be viewed as contradictory since a mixture of

log-normals is light tailed (in particular having all moments finite), while the double Pareto log-normal used

to fit the data is heavy tailed (with an infinite variance, i.e. second moment). This is another example of the

interesting distributional fragility ideas raised by Gong, Liu, Misra and Towsley (2001), who made the

very important observation that frequently a variety of models can give apparently good fit in the tails. This
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happens precisely because the distributional information is very sparse there. Based on the insights about

variability that follow from our graphics, this is very consistent and highlights the fact that one can never

use empirical data alone to distinguish between such models. Instead of debating which model is right, it

makes more sense to think about the collection of models that are consistent and what can be learned from

them as a whole. Consequences which hold for all of the reasonable models then seem the most compelling.

It is natural to wonder about the impact of these statistically significant wobbles in the tail of the size

distribution on the elegant theory, suggesting that heavy tails of the duration distribution cause long-range

dependence.

Downey (2001) provided interesting statistical evidence of these wobbles through an analysis based on

the concept of tail index. The classical definition of tail index from extreme value theory (see e.g. Chapter

1 of Resnick (1987) for an introduction) is the asymptotic rate of decay of the (underlying theoretical)

cumulative distribution function. Downey analyzes an empirical version of this, and shows that it often

does not stabilize as one moves out in the tail. This is completely consistent with the wobbliness discussed

above. Downey concludes that duration distributions are not heavy tailed. He goes on to suggest that

another cause needs to be found for the observed long-range dependence in aggregated Internet traffic.

Another goal of the present paper is a deeper look at these issues from the above viewpoint of under-

standing tail behavior in various regions, with attention paid to sampling variability. This motivates refining

the notion of tail to cover three important cases. The part of the tail that is beyond the last data point,

thus with no information at all in the data, is called the extreme tail. The part of the tail where there

is some data present, but not enough to reliably understand distributional properties is called the far tail.

The part of the tail where the distributional information in the data is rich is called the moderate tail.

These concepts are heuristic, so there is no sharp boundary e.g. between the far and moderate tail, but

these concepts provide the needed framework for understanding the data analysis given in Section 2.

Another visualization used in Section 2 is an effective tail index plot showing that, as observed by

Downey (2001), indeed the tail index does not seem to stabilize as one moves farther out in the tail. This

indeed suggests that the simplest models from extreme value theory are not applicable. But there is a

richer tail index theory, based on the idea of regular variation, see e.g. Resnick (1987), which allows for

wobbliness as long as the wobbliness diminishes as one moves out in the tail. This theory is described and

related to the data in Section 4.1, where it is also seen that tail wobbles in the duration distribution are

somewhat smoothed in the autocovariance of the aggregated traffic. This richer extreme value theory allows

for wobbles in the tail of the duration distribution and also implies long-range dependence in the aggregated

traffic, according to the conventional theory.

While a regular-variation assumption is consistent with all that is observed in the data, it is not completely
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satisfying because it leans on a type of asymptotics that involves eventual stabilization of the tail index, even

if the stabilization is slow. Worse, it appears to be ultimately driven by far and extreme tail behavior where

the information in the data is unacceptably sparse. This motivates understanding other ways in which

heavy tailed durations can lead to long-range dependence. A key idea here comes from the observation

that the effective tail index is quite often in a range which is classically associated with yielding long range

dependence. While Downey correctly found a lack of convergence of the tail index, the oscillation happens

mostly in a range where any of the observed tail indices would imply long-range dependence if they only

stabilized. This motivates an alternate mathematical approach, where the tail index does not stabilize, but

instead only stays within certain bounds, and perhaps does that only most of the time. The final important

contribution of this paper is an enhanced theory which shows such assumptions can also yield long-range

dependence. In particular, in Section 4.2, very mild conditions (very broadly consistent with the data

analyzed above) on the duration distribution are presented which yield asymptotic behavior (polynomial

decay of the autocovariance function) that is symptomatic of long-range dependence.

The main contributions of this paper, from the perspective of the networking community are recapped

in Section 5.

2 Size distribution analysis

In this section a different data set from that of Figure 1 is analyzed. This time HTTP response sizes,

gathered from the UNC main link during April of 2001 are considered. HTTP response size is defined to

be the number of bytes of data transmitted in a web server’s response to a single HTTP request. To allow

study of diurnal effects, IP packet-header traces were gathered during 21 four-hour blocks over each of the

7 days of the week, including morning (8:00AM-12:00AM), afternoon (1:00PM-5:00PM) and evening

(7:30PM-11:30PM) periods on each day. The total number of HTTP responses in the four hour blocks

ranged from ∼1 million (weekend mornings) to ∼7 million (weekday afternoons). The HTTP response size

distributions are analyzed separately for each of these 21 time blocks.

An issue is boundary effects. Here we only consider packets observed during the 4 hour time block, so

some of the responses hang over either end and are truncated in our analysis. This creates some distributional

bias of the size distributions, but by stationarity this bias expected to be unrelated to our main results on

wobbly tails of the size distribution.

The 21 analyses were surprisingly similar so, to save space, only the results for Thursday morning are

shown for most purposes. However the other analyses can be conveniently viewed at the web site Hernández-

Campos, et al, (2003).
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2.1 Pareto tail fitting

Figure 2 examines how well the Thursday morning HTTP response size distribution (based on n = 5, 663, 605

data points) can be fit by the standard Pareto distribution. The visual device used here is called a Q-Q

plot, because it allows graphical comparison of the quantiles of a theoretical Pareto distribution with the

quantiles of the data set. In particular the solid curve is constructed by plotting theoretical quantiles on

the horizontal axis against the sorted data values on the vertical axis, on a log-log scale using natural logs

to avoid a few large values dominating the picture. If the data quantiles were the same as the theoretical

quantiles (this should approximately happen when the fit is good), the solid curve should follow the 45 degree

line, shown as dashed in Figure 2. See Fisher (1983) for a good overview of Q-Q plots, and a variety of

related statistical tools.

For better insight into which part of each distribution is represented by which part of the solid curve,

labelled plus signs are shown for some selected quantiles. One reflection of the heavy tailed nature of these

data is the fact that the 0.99 quantile, only 1 percent of the data are larger than this, appears near the

middle of this display. This shows that there are very few elephants (the data on the upper right), and

a very large number of mice (the bulk of the data on the lower left). The particular Pareto distribution

shown here was chosen by quantile matching. In particular the two Pareto parameters α and σ were chosen

to make the theoretical and empirical 0.8 and 0.99 quantiles (shown as small circles) the same. Thus the

solid curve crosses the dashed line at these quantiles. The choice of 0.8 and 0.99 for the quantile matching

was made to provide best visual fit between the solid and dashed lines.

The fit with a Pareto distribution, i.e. the closeness of the solid curve to the dashed line, might be

deemed acceptable. There is some wobbling which one might expect to be due to the natural sampling

variability. On the other hand, the sample size is quite large, so maybe the amount of wobbling is statistically

significantly greater than could be expected from truly Pareto data. The dotted curves provide a visual

device for a simple understanding of this issue. They are an overlay of 100 simulations of data sets of the

same size, n = 5, 663, 605, generated from the fitted Pareto distribution. If the data were truly Pareto, then

the wobbles of the solid curve would lie mostly within the dotted envelope. This is roughly true for the very

largest data values, but generally the wobbles veer far outside of the dotted envelope, which for much of

the range of the data is so close to the dashed line that it disappears underneath, showing this difference is

statistically significant and not due to the natural sampling variation. A clear conclusion is that the Pareto

distribution is not a precise fit to these data, which is not surprising with a sample so large. A similar

analysis, with very similar conclusions, of all 21 time blocks is available at the web site Hernández-Campos,

et al, (2003).

Simulated envelopes are used in a closely related way in other parts of this paper. While this does not

7



5 10 15

4

6

8

10

12

14

16

18

20

log
10

(Pareto Quantiles)

lo
g 10

(O
bs

er
ve

d 
Q

ua
nt

ile
s)

α = 1.3923

σ = 2226.2475

0.1 quantile

0.5 quantile

0.9 quantile

0.99 quantile

0.999 quantile

0.9999 quantile

0.99999 quantile

Figure 2: Pareto Q-Q plot (solid) for the Thursday morning HTTP response size data. Compare to 45

degree line (dashed) and simulated versions (dotted). Shows that the Pareto fit is not perfect.

give a precise statistical hypothesis test, it does give a clear indication of the natural sampling variability,

that gives an impression of goodness of fit that is useful for exploratory data analysis. A rule of thumb is

that when the data curve lies completely within the simulated theoretical envelope, the fit is quite good. If

the curve sticks out somewhere, the fit is poor, and the visualization clearly shows why the fit is bad.

In addition to allowing conclusions of the above type, the visualization in Figure 2 also begins to provide

an answer to the question: where can empirical data provide clear distributional information? We can

compare the simulated data with the theoretical distribution to answer this question. The information is

clearly very strong, in the sense that the dotted envelope is completely underneath the dashed line, up to

nearly the 0.9999 quantile, the point where only 0.01% of the data are larger. This region includes both

the body of the distribution and the moderate tail. Note that this includes HTTP responses of all sizes up

to about 1.2 megabytes,perhaps the term elephants can be used for responses that are larger than this, and

there are about 560 of these among the 5.6 million total responses. For the top 500 responses, distributional

information is understandably sparser, but the dotted envelope in Figure 2 suggests that some useful insights

may still be available, even up to about the 0.99999 quantile, where only the top 50 data values lie. This

region between the 0.9999 and 0.99999 quantiles is termed the far tail of this distribution. Finally the

extreme tail is the region larger than the biggest data point (the right end of the solid curve), 980 megabytes
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for this data set.

Downey (2000) suggests that a log-normal fit may be expected to be better. We performed a similar

analysis to Figure 2 with the log-normal replacing the Pareto (except this time parameter estimation is easier

because one needs only compute the mean and variance of the log data) but the results seemed slightly worse.

In particular, in addition to the tail wobbliness observed here, there is also substantial curvature away from

the dashed line. Such a picture is not included here because it is tangential to the main points of this paper

but full results can be viewed in Hernández-Campos, et al, (2003).

2.2 Variable Tail Index

A strength of the Q–Q visualization shown in Figure 2 is that it allows precise comparison to a given dis-

tribution coupled with immediate understanding of the sampling variability (shown by the dotted envelope)

and, thus, of the moderate, far, and extreme tails. One weakness of the Q-Q visualization is that it can only

be constructed in the context of a particular theoretical distribution. An obvious choice for the theoretical

distribution may not be available, especially if one would like to model the tail wobbles apparent in Figure 2.

A second weakness is that a useful Q-Q plot also usually requires reasonable estimation of the parameters.

A common alternate visualization of tail behavior in data, which has the advantage of not being tied

to any theoretical distribution, is the Log Log (base 10) Complementary cumulative Distribution function

(LLCD) plot shown in Figure 3 for the same data as in Figure 2. In this view, the sorted data values,

called empirical quantiles in Section 2.1, and appearing on the vertical axis in Figure 2, are plotted on the

horizontal axis, while the corresponding empirical LLCD is plotted on the vertical axis.

If the data came from a Pareto distribution, the solid curve in Figure 3 would be nearly linear, and the

slope of the line would be the Pareto shape parameter (also called tail index) α. Again for clarity as to

where the data lie in this plot, some selected quantiles are indicated. Matching these with the corresponding

quantiles in Figure 2 shows an interesting correspondence. In particular, the wobbles in Figure 2 correspond

directly with the wobbles in Figure 3.

A serious weakness of the graphic in Figure 3 is that it shows nothing about the important underlying

statistical variability and it provides no indication of the boundary between the moderate and far tails. It is

natural to suspect that the wobbles are just artifacts of the sampling process, and can be ignored. However,

the deep analysis of Figure 2 suggests that these wobbles are systematic, not random, variation.

Another view is given in Figure 4, where the same LLCD plots are shown for the response sizes in all

21 four-hour time blocks as an overlay. Different line shadings are used for different days, there are 3 lines

in each of 7 shadings. It is rather surprising how similar all 21 of these curves look. In particular they lie

nearly on top of each other over a surprisingly large range of the data. Note that for the first 99% of the
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Figure 3: LLCD plot of the distribution of the Thursday morning HTTP response size data. Horizontal axis

is size in bytes. Shows wobbly tail, inconsistent with most standard distributions, such as the Pareto which

should be linear on this scale.
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Figure 4: LLCD plots of distributions of HTTP response size data for all 21 traces. Note very similar

pattern, showing “wobbles” are not sampling artifacts.

data range (recall the 0.99 quantile appears as -2 on the vertical axis), there is nearly only one shade visible

because the other 18 curves are so close to these. Some distinctions among the curves can be seen beyond

the .99 quantile.

The similarity of the curves in Figure 4 provides a very different confirmation of the lesson learned from

Figure 2: the wobbles in the tail are systematic, not due to sampling variability. This is based on the

idea that if the wobbles resulted from a random phenomenon, then they would appear in different locations

on different days. One goal of this study was to understand diurnal, i.e. time of day and day of week,

effects. Such effects have a large impact on total network traffic and system usage as determined by easily

understandable differences in user behavior. We expected this obviously differing user behavior to also have

a major impact on response size distributions. For example, during peak times there would be more business

web browsing with students and faculty looking for educational resources, staff browsing e-commerce sites

etc., and more multimedia-rich recreational browsing being done at off peak times. Thus we found the

constancy of the response size distributions over time quite surprising.

The striking presence of the wobbles shown in Figure 4 suggests that it is worth trying to understand and

perhaps to model them. This is done in Section 3, where it is seen that mixtures, either of three log-normal
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Figure 5: Effective Tail Index plots for the Thursday morning HTTP response size data. The upper left

panel is the same as Figure 3, the others are essentially different numerical derivatives. Shows that while

the effective tail index does not stabilize, it still“mostly” stays in critical range α ∈ (1, 2).

or of three double Pareto log-normal distributions, provide a good fit. The mixture components are then

used to cast light on likely explanations for the wobbles based on web-related characteristics.

The LLCD is also very useful for understanding effective tail index. In particular, the slope of the curve

in Figure 3 can be taken as a notion of effective tail index (multiplied by -1). However, while slope seems

visually clear in graphics like those shown in Figure 3, it can be slippery to properly define and analyze.

Downey (2001) uses a type of numerical differentiation that gives some useful results but care and numerical

expertise are important as illustrated in Figure 5.

The top left panel of Figure 5 shows the same curve as in Figure 3, but with a different aspect ratio, for

easy comparison. A straightforward way to find slopes is to take simple difference quotients as shown in

the lower left panel of Figure 5. Difference quotients of noisy data can be very unstable, and a rather large

number of them here are actually undefined because of zero denominators. Difference quotients with a zero

denominator (and those smaller than -4) are mapped to -4 in this view. If one is willing to view the small

difference quotients as noise artifacts, then most attention should be paid to the large values. Interpreting

the upper edge of the plotted line in the lower-left panel as minus the effective local tail index, α, note that
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there is an impression that frequently α ∈ (0, 2). This range is quite noteworthy, because it is the classical

tail index range which results in long-range dependence (or even non-stationarity) of the aggregated traffic.

While the difference quotient analysis shown in the lower left panel of Figure 5 is suggestive, it is far

from conclusive because it is not clear how many of the difference quotients are near the upper edge. A

more convincing view can be obtained by more careful numerical differentiation of the curve in the top left

panel, which is roughly similar to smoothing the curve in the bottom left panel. A simple approach is to use

more widely spaced points for forming the difference quotients. This is done in the right panels in Figure

5, where difference quotients,
F (x+ δ)− F (x)

δ

are computed based on an equally spaced grid with width δ. The values of δ were carefully chosen to

illustrate the main ideas. This happened for δ = 0.3 for the top panel and δ = 0.03 for the bottom panel.

In the bottom right panel, the effective tail index resulting from using the fairly small δ = 0.03 smoothed

away much of the variability present in the bottom left panel. However, there is still substantial variability

present, suggesting this δ is still too small. The effective tail index for the smoother curve in the top right

panel, using δ = 0.3, now has the noise completely eliminated. The danger of too large a δ is that it will also

smooth away clearly important and systematic changes in the slope, i.e., the effective tail index. However,

observe that the general shape of the effective tail index in the top right panel is the same as that in the

bottom right panel (modulo the similar downward noise for the bottom panel) which shows that no strong

distortion is present. Thus the curve in the top right panel does a good job of reflecting effective tail index.

The first interesting feature of this effective tail index α is that it wobbles substantially, with the wobbles

following those of the curve in the top left panel. In particular the curve on the top right is lower where the

top left curve is steeper. The second interesting feature is that it is nearly always in the range α ∈ (0, 2),

which as noted above is classically associated with long-range dependence. Similar analyses for the other

time blocks can be viewed in Hernández-Campos, et al, (2003). The lessons are generally quite similar. An

exception is that in many cases the −α curve did not dip below the threshold at 2 and Thursday morning

was chosen for display because this did happen thus motivating the generality of the theoretical work in

Section 4.2.

This view shows clearly that while the effective tail index does not stabilize in any meaningful sense, at

least over regions where we have useful distributional information, it seems very likely to generate long range

dependence in the aggregated traffic. This idea is backed up in one way by the results in Section 7 of Gong,

Liu, Misra and Towsley (2001), who study this effect by simulation. Another view, based on a deeper and

more general theory is given in Section 4.2.

Note that our variable tail index curve is actually defined over the whole range of the data, instead of
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just in the tails. One could restrict this to a suitably defined tail region, but we are unaware of a good

formal definition of this. Again, this is only a heuristic, so we do not attempt a precise definition.

3 Improved distribution modelling

Figures 2 and 4 provide a strong suggestion that the wobbles in the tail of the distribution represent important

underlying structure. In this section, that structure is modeled and the model provides a vehicle for potential

explanations. Section 3 of Gong, Liu, Misra and Towsley (2001) contains a good overview of possible

mechanisms that could generate duration distributions with characteristics like those observed above.

Downey (2000) presented some attractive arguments for why distributions of file sizes could be expected

to be log-normal. The main idea is that most files are modifications of other files, and that such modifications

are often effectively viewed asmultiplicative changes in the file size. Aggregation of a sequence of independent

changes of this type may result in an instance of a multiplicative central limit theorem, thus yielding a log-

normal distribution. While Downey was working explicitly with file sizes, such mechanisms seem to be at

play with response size distributions as well. See Mitzenmacher (2004) for some interesting extensions of

Downey’s ideas.

Reed (2001) presents the double Pareto log-normal distribution, which is formed by the product of a

double Pareto random variable (having density proportional to x−α−1 for x > 1 and proportional to x−β−1

for x < 1) and an independent lognormal random variable. This distribution can be viewed as extending

Downey’s ideas by incorporating an independent exponential number of random shocks. Allowing the

number of multiplicative shocks to be random not only seems a little more realistic, it has the large advantage

of yielding a Pareto-like polynomial tail of the distribution. This feature is quite interesting, especially in

view of Figure 2, where it is seen that the Pareto gives a fit to the actual response size distribution that is

not completely unreasonable.

Figure 6 assesses the goodness of fit of the double Pareto log-normal distribution, to the data shown

in Figure 3. The view is again the LLCD, so the solid curve is the same as in Figure 3. The dashed

curve shows the LLCD for a double Pareto log-normal distribution with parameters chosen for good visual

impression. Some attempts at maximum likelihood estimation failed, perhaps because the parameters

are nearly not identifiable (observed during the visual fitting process), or because there are multiple local

solutions generated by the wobbles. To visually reflect the level of sampling variability, once again 100

simulated data sets (of the same size n = 5, 663, 605) were drawn from the fitted distribution and the

resulting LLCDs are plotted as dotted curves. In the same spirit as Figure 2, the dotted envelope gives

easy visual insight into the separation between the moderate and far tails, i.e. where the distributional

information in the data is rich, and where it is sparse.
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Figure 6: LLCD plot for the distribution of Thursday morning HTTP response sizes, together with a visually

fit double Pareto log-normal. The envelope of simulated LLCDs, from the double Pareto log-normal shows

that the response size distribution is significantly different.
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The dashed curve in Figure 6 is nearly linear over much of its range, showing that its tail corresponds

closely to that of a Pareto (which is exactly linear). This property is not shared by the log-normal, although

it can hold approximately over a quite wide range of quantiles, which drives the results of Hannig, Marron,

Samorodnitsky and Smith (2001). This asymptotic, i. e. extreme tail, convergence to linear of the double

Pareto log-normal LLCD may be a conceptual advantage over the conventional log-normal.

The dotted envelope in Figure 6 shows that while the double Pareto log-normal seems to head globally

in the right direction, it is still far from a good fit. The fit is good when the solid curve lies mostly in the

dotted envelope. As observed in Section 2, all of the departures are caused by wobbles in the tail of the

distribution of the response size data and happen in the moderate tail.

The distributions considered so far do not have the flexibility to capture the wobbles, because their tails

are inherently smooth. While there are many ways to generate probability distributions with wobbly tails,

e.g. by using piece-wise approaches, the most intuitively appealing is mixture modeling. Mixture models

arise very naturally in the context of a population that is composed of several subpopulations. Wobbles of

the type observed above result when these subpopulations have very different distributions.

Figure 7 shows the result of fitting a mixture of three double Pareto log-normal distributions to the same

response size data set as above. The format is the same as in Figure 6. A mixture of two distributions was

able to explain a large share of the wobbliness but not all (see the web site Hernández-Campos, et al, (2003))

so the mixture of three is shown here. As noted above, double Pareto log-normal parameters even for a single

population do not appear to be straightforward to estimate. This problem becomes far more challenging

for mixture models, where estimation is notoriously slippery, even for mixtures of simple distributions.

Hence the parameters of the dashed fit curve have again been tuned for good visual impression, through a

painstaking trial and error process.

The dashed fit curve in Figure 7 lies nearly completely on top of the solid curve showing the LLCD of the

data. The only substantial departure is on the lower right, the far tail, where the dotted envelope reveals

that the variability is mostly well within that expected from the sampling process.

While the fit in Figure 7 looks impressively good, especially for such a large sample size, it is important

to resist the urge to conclude that these data come from this model. First, it must be kept in mind that

the family of mixture distributions is extremely broad and if enough components are included almost any

distribution can be well approximated. For example, the visual device of the dotted envelope steers one

away from the temptation to add a fourth mixture component to explain another wiggle beyond the 0.99999

quantile. This could be done, but it would be gross overfitting because that wiggle can not be separated from

the random sampling noise. Second, it is important to recall the nice distributional fragility ideas of Gong,

Liu, Misra and Towsley (2001), and the idea that there are likely to be a family of different distributions
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Figure 7: LLCD plot for the Thursday morning HTTP response size data, together with a visually fit mixture

of 3 double Pareto log-normals. This shows that the fit is surprisingly good, since the data LLCD lies

essentially within the simulated envelope.
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Figure 8: LLCD plot for the Thursday morning HTTP response size data, together with a visually fit mixture

of 3 log-normals. Again the theoretical fit is surprisingly good.

that fit.

This point is made in Figure 8, which is the same as Figure 7, except that now a mixture of three log-

normals is fit to the data. As above, a mixture of two log normals was attempted, but was not satisfactory

(see Hernández-Campos, et al, (2003)). Again the population parameters were fit by painstaking visual

trial and error.

The fit in Figure 8 is again impressively good. A minor exception is for the extreme observations in

the right part of the far tail where the solid curve leaves the dotted envelope. This suggests that the log-

normal tail is not exactly right, which makes intuitive sense when comparing Downey’s conceptual model

with Reed’s, but it is very close and could clearly be captured by adding just one more mixture component.

A referee has correctly pointed out that this is not quite fair to the log-normal distribution, because the

log-normal needs far fewer parameter than the double Pareto log-normal. It might be fair in this sense to

add a component, but we have resisted doing this, because it would reflect less than 10 observations, which

seems too sparse to be meaningful.

As noted above, these two fitted distributions are quite different in terms of classical asymptotic tail

behavior. But the important point is that they are very similar in the moderate tail, and thus can not

be distinguished using only the empirical data. Hence, several models should be kept in mind for use in
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analysis and simulation.

Models which fit as well as those shown in Figures 7 and 8, should be able to cast new insights in to

the phenomena at hand. This calls for careful consideration of the chosen parameters. For the log-normal

mixture in Figure 8, the parameters are the mean µi and standard deviation σi of the components (of the

data in the natural log scale), and the component weights wi (i.e. the probability a data point comes

from that subpopulation). The numerical values, using i to index the component subpopulations, appear

in the following table

i 1 2 3

µi 5.7 8.45 13.05

σi 0.6 1.2 1.55

wi 0.55 0.4488 0.0012

.

The first two parts together include nearly 99.99% of the data, thus modelling the body of the data

as shown in Figure 8. The slight wobble near the median appears because about 55% are in the first

subpopulation, which is centered at log10 (exp(5.7)) = 2.47 on the scale of Figure 8, and almost all the rest

are in the second, centered at log10 (exp(8.45)) = 3.24. The convexity near the 0.999 quantile is created by

the interaction of these two components, with the third component, centered at log10 (exp(13.05)) = 5.67.

These parameters allow a simple and appealing explanation of the sub-populations. About 55% of the

HTTP responses come from a population with sizes in the range (10, 1000) bytes (within plus or minus an

order of magnitude of 102 bytes), examples of which include tiny layout images, small HTTP responses (such

as error status), and navigation bars in multi-frame pages. Most of the rest of the traffic has sizes in the

range (1000, 100000) bytes, which perhaps includes most standard HTML text pages, images, and ordinary

files. There is also a significant sub-population of far larger files with sizes roughly within plus or minus

an order of magnitude of 106 that perhaps are software, multimedia content (such as video clips), and PDF

documents.

We speculate that within each subpopulation, Downey’s ideas of multiplicative averaging are indeed

generating distributions similar to the log-normal. The full distribution does not look log-normal, however,

because there is not so much averaging occurring that it can bridge the large gap between these sub-

populations.

The mixture of double Pareto log–normal distributions have more parameters. Here the notation of

Reed (2001) is used. The distribution has the appealing simple representation as the product of a mixture

of Pareto random variables and a log-normal. The log-normal mean parameter for each mixture component

is νi and the standard deviation is τi. The Pareto factor has tail parameters αi and βi. Explicit numerical

19



values for the curve in Figure 7 are

i 1 2 3

νi 5.7 8.45 13.35

τi 0.6 1.2 0.75

αi 2 10 1.3

βi 2 10 1.3

wi 0.6 0.399 0.001

Note that many of the parameters are surprisingly similar to the corresponding log-normal parameters

given above. This is because when the tail parameters αi and βi are large, the Pareto mixture factor is close to

1, and thus negligible, so the distribution is nearly log-normal. The exception is the third component, where

the log-normal standard deviation τ3 is substantially smaller, since sub-population spreading is accomplished

by the very influential tail parameter βi = 1.3. This tail parameter makes this distribution heavy tailed in

the classical asymptotic sense.

Again there is a strong suggestion that Reed’s ideas of population generation are working on these

subpopulations but these three are separated by too many orders of magnitudes for their differences to be

averaged out.

Interesting possibilities for future work include a more careful identification of the subpopulations, and

a study of how they evolve over time. In particular, both the subpopulation parameters and also their

relative weights (the wi) probably change over time in ways that are worth additional study. Also, new

subpopulations are likely to appear in the future. Finally it would be of keen interest to extend this type

of analysis to other types of TCP traffic (only HTTP is studied here), which would likely include other

interesting sub-populations such as peer-to-peer file-sharing applications.

3.1 Other Data Sources

An important question about the modelling discoveries made above is: how well do they generalize? In

particular, up to this point we have shown only a deep look at HTTP response sizes from the UNC main

Internet link and these population properties could be artifacts of only that location at a particular time.

To study this issue we have applied a similar analysis to more HTTP response size empirical data

sets, derived from the IP packet-trace archives of the National Laboratory for Applied Network Research

(http://www.nlanr.net/).

We first analyzed traces from the University of Auckland and found quite similar structure. The trace

collection consists of seven 24-hour long IP header traces taken at the Internet access link of the University

of Auckland in mid April, 2001. We derived a response size data set following the same procedure we

developed for the UNC traces. To investigate whether the main points also extend beyond universities, we
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Figure 9: LLCD plot for the HTTP response size data, together with a visually fit mixture of 3 double Pareto

log-normals, for data from the New Zealand Internet Exchange. Again the fit is surprisingly good, showing

that the observed phenomenon occurs for data outside of UNC.

also analyzed data from the New Zealand Internet Exchange (NZIX). At the time of the traffic capture,

NZIX served as a interconnection point for six telecommunication companies. The traces comprise 6 days of

packet headers collected in July 2000 and capture flows passing from the network operated by one provider

to another provider’s network. The full set of graphics are not shown here to save space. Analogs of Figures

2, 3, 5, 6 and 7 can be found in Hernández-Campos, et al, (2003). The lessons from these follow the same

train of thought as above. No single distribution provides an acceptable fit, but a mixture of three double

Pareto log-Normal distributions gives an excellent fit using somewhat different parameters.

The most important result, the good fit of a mixture of three double Pareto log-Normal distributions, is

illustrated in Figure 9 for the NZIX data. Here we show n = 857, 172 HTTP response sizes that were found

in one four-hour period between 8:00AM and 12:00Noon during April of 2000.

The fit is of similar high quality as that shown for the UNC data in Figures 7 and 8. Hence, the main

ideas of this paper appear to carry over very well to other networks.

Another example, with very similar main lessons, is shown in Figure 10. This time the data come from

the University of Auckland, in New Zealand. The data are the sizes of 610,816 HTTP responses from 1:00PM

to 5:00PM on Tuesday, April 4, 2001.
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Figure 10: LLCD plot for the Tuesday afternoon HTTP response size data, together with a visually fit mixture

of 3 double Pareto log-normals, for data from the University of Auckland. This again suggests generality of

the notion of fitting this distribution to data.
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These new data, are again visually fit with a mixture of three double Pareto log Normal distributions. As

in Figures 7, 8 and 9, the fit is exceptionably good, with the solid and dashed curves essentially coinciding

over the moderate tail, and acceptable variation in the far tail (where the dotted envelope begins to fan out).

We suggest that these general lessons apply well beyond the UNC data that have driven most of our work.

4 Improved long-range dependence theory

This section explores several types of mathematical theory which are motivated by the above analysis. The

wobbliness of the tails, visible for example in Figure 3, is seen to be consistent with the notion of regular

variation in Section 4.1. Under this assumption, the wobbles must diminish as one moves far enough out in

the tails, and thus the classical notion of tail index still holds. However, if this stabilization occurs, Figure

5 shows that it happens in a tail region where the distributional information in the data is sparse. This

corresponds to the case where either the number of mixture components in the models of Section 3 does

not grow, or else components farther out in the tail have a diminishing impact.

In the above spirit of simultaneously considering several models that fit the data, and can’t be reliably

distinguished from the data alone, it makes sense to also consider mathematics where the tail need not be

regularly varying. Figure 5 also shows that while the effective tail index does not stabilize, it is usually

within a range that is associated with the generation of long-range dependence. Note that we are considering

the cases where wobbles in the duration distribution are strongly related to wobbles in the corresponding

size distribution as observed experimentally by Le, Aikat, Jeffay, and Smith (2003). The mathematics of

Section 4.2 feature very mild assumptions on the effective tail index, as plotted in Figure 5, which will still

result in long-range dependence, in the sense of a polynomial decay of the autocovariance function. This

corresponds to the case where the number of significant mixture components in the models of Section 3

continues to grow as one moves farther out in the tail.

For convenience of analysis, this section considers a deliberately simple mathematical model for data of

the type illustrated in Figure 1. It is now convenient to shift the focus once again from size distributions

to duration distributions. Many variations are possible, and we view the establishment of similar results

in more realistic and general contexts as interesting open problems. For simplicity, only continuous time

processes are considered here. Our model has been called a fluid queue with Poisson input and amodel

with M/G/∞ input. The flow arrival process, the point process of starting times of the horizontal line

segments in Figure 1, is a standard Poisson process with intensity parameter λ. Marron, Hernández-Campos

and Smith (2001) have studied the effectiveness of this approximation, and suggested a richer model. The

duration times (the random lengths of the line segments), are independent, identically distributed, with

cumulative distribution function (CDF) F (x) and complementary CDF F (x) = 1 − F (x). Aggregation of
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the traffic is represented by Xt, the number of active flows (line segments in Figure 1) at time t.

4.1 Varying slopes in classical heavy tail theory

This section studies the classical notion of regular varying tails, which allows wobbly tail behavior as

seen in Figure 3. As seen for example in Resnick (1987), regularly varying functions are an integral part of

extreme value theory, the branch of probability concerned with distributions of maxima of sets of random

variables.

Recall, from Section 1, and (1), the notion of a heavy tailed distribution, F (x) ∼ x−α, with tail index α.

As noted in Section 1, polynomial decay of the autocovariance, R(t) ∼ t−(α−1) with exponent α− 1 ∈ (0, 1),

is typically viewed as a symptom of long range dependence. This follows from heavy tailed duration

distributions because for the model considered, the autocovariance is simply and directly related to the tail

of the duration distribution, as

R(x) = λ

∫ ∞

x

F (y) dy, (2)

as seen for example in Cox (1984) and Resnick and Samorodnitsky (1999).

It is usual also to refer to such distributions as having power, or Pareto, tails. Such distributions are

really a particular case of distributions with regularly varying tails, which also cause long-range dependence.

As defined in, for example, Section 0.4.1 of Resnick (1987), a distribution is said to be regularly varying at

∞, with exponent −α when for every x > 0

lim
t→∞

F (tx)

F (t)
= x−α.

As seen in Karamata’s Theorem, see Section 0.4.2 of Resnick (1987), a useful characterization of a regular

varying tail is the existence of functions ε (t) and c(x), where for x ≥ 1,

F (x) = c(x)x−α exp

(
∫ x

1

ε (t)

t
dt

)

and where ε (t)→ 0 as t→∞ and c(x)→ c ∈ (0,∞) as x→∞.

The function ε (t) has a very direct connection to the wobbles observed in the tails of the log-log CCDF

in Figure 3 above. We will assume for simplicity that c (x) ≡ 1. This guarantees existence of a probability

density, f (x). Note that

f(x) = F ′ (x) =
(

1− F (x)
)′

(3)

= αx−(α+1) exp

(
∫ x

1

ε (t)

t
dt

)

− x−α exp

(
∫ x

1

ε (t)

t
dt

)

ε (x)

x

= x−(α+1) exp

(
∫ x

1

ε (t)

t
dt

)

(α− ε (x))

=
F (x)

x
(α− ε (x)) .
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This shows that for the function ε (x) to result in a probability distribution F (x), it must be restricted to

ε (x) ≤ α, for all x ≥ 1. Figure 3 is an empirical version of a plot of F (x) as a function of x, on the log - log

scale. The slopes in this plot, whose empirical versions are studied in Figure 4, are essentially the derivative

d

dy
logF (ey) = −

f (ey) ey

F (ey)
= − (α− ε (ey)) ,

a very simple function of the ε (x) from Karamata’s Theorem.

This framework shows that the regular varying functions allow a large degree of tail wobbling, such as

seen in Figure 3. A simple example is

ε (x) =
sinx

xβ
, (4)

for x ≥ 1 and β > 0, which will result in wobbles of the magnitude observed there.

While the log-log CCDF of the distribution can and does wobble considerably, it is perhaps worth noting

that under the above model, the resulting aggregated traffic autocovariance R (t), tends to be smoother

because of the integration in (2). In particular, when the duration distribution F (x) is regularly varying,

R (t) =

∫ ∞

t

F (x) dx ∼
1

α− 1
tF (t) ,

as t→∞, which may oscillate much less. The rest of this section is devoted to making this idea precise.

Assume for example that

|ε (t)| = O

(

1

t

)

,

as t→∞, and that
∫ ∞

x

ε (t)

t
dt = O

(

1

x2

)

,

as x→∞. An example of this is (4) with β = 1. Then the distribution has a Pareto tail in the sense that

F (x) ∼ cx−α, as x → ∞. This results in a classical symptom of heavy tail dependence of the aggregated

traffic: R (t) ∼ t−(α−1).

By (3)

α−
xf (x)

F (x)
= ε (x) = O

(

1

x

)

,

as x→∞, and so
∣

∣

∣

∣

F (x)

xf (x)
−

1

α

∣

∣

∣

∣

∼ ε (x) = O

(

1

x

)

.

Now the above calculations, together with

tF (t) = t−(α−1) exp

(
∫ t

1

ε (u)

u
du

)

= (α− 1)

∫ ∞

t

x−αdx exp

(
∫ t

1

ε (u)

u
du

)
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give

∣

∣

∣

∣

R (t)

tF (t)
−

1

(α− 1)

∣

∣

∣

∣

=

∣

∣

∣
(α− 1)

∫∞

t
x−α exp

(

∫ x

1
ε(u)
u

du
)

dx− (α− 1)
∫∞

t
x−α exp

(

∫ t

1
ε(u)
u

du
)

dx
∣

∣

∣

(α− 1) tF (t)

≤

∫∞

t
x−α exp

(

∫ x

1
ε(u)
u

du
) ∣

∣

∣
1− exp

(

−
∫ x

t

ε(u)
u

du
)∣

∣

∣
dx

tF (t)

≤ (1 + o(1))

∫∞

t
x−α exp

(

∫ x

1
ε(u)
u

du
) ∣

∣

∣

∫ x

t

ε(u)
u

du
∣

∣

∣
dx

tF (t)

≤ (1 + o(1)) t−2

∫∞

t
x−α exp

(

∫ x

1
ε(u)
u

du
)

dx

tF (t)

∼
1

1− α
t−2,

as t → ∞. Thus while the slope of the log-log duration CCDF converges to α at the slow rate x−1, the

slope of the resulting aggregated autocovariance (in the same log-log scale) convergence to α−1 at the much

faster rate t−2.

4.2 Varying slopes give long-range dependence

This section considers the case where the tail wobbles visible in Figure 3 may not be of regular varying

type, in the sense that the effective tail index does not stabilize as one moves farther out in the tail of the

distribution.

The main result is that under suitable mild assumptions, allowing behavior of the type observed in Figure

4, one has behavior that is symptomatic of long-range dependence, in the sense that

R(x) ≥ kx−(α−1), (5)

for some constant k > 0.

Assume that for some c > 0, and α > 1,

F (x) ≥ cx−α,

for x ∈ In = (an, bn), n = 1, 2, · · · , with a1 < b1 < a2 < b2 < · · · , satisfying for some M > 1,

an+1

bn
≤M,

bn
an
≥ 1 +

1

M
, n = 1, 2, ...

This structure is intended to quantify the notion that the effective tail index is usually but not always smaller

than α, in particular allowing the curves in Figure 5 to occasionally fall below the level -2. For x > 0, find

the indices that bracket x by an:

η+(x) = min {j : aj ≥ x} ,

η−(x) = max {j : aj < x} = η+(x)− 1.
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Note that aη−(x) < x ≤ aη+(x).

Now we check that these assumptions give (5). Assume first that x ∈
[

bη−(x), aη+(x)

]

. Then

aη+(x)

x
≤

aη+(x)

bη−(x)
=

aη+(x)

bη+(x)−1
≤M. (6)

Hence

R(x) =

∫ ∞

x

F (y) dy ≥

∫ bη+(x)

aη+(x)

cy−αdy (7)

=
c

α− 1

(

a
−(α−1)
η+(x) − b

−(α−1)
η+(x)

)

=
c

α− 1
a
−(α−1)
η+(x)

(

1−

(

bη+(x)

aη+(x)

)−(α−1)
)

≥
c

α− 1

(

1−

(

M

M + 1

)α−1
)

a
−(α−1)
η+(x)

≥
c

α− 1
M−(α−1)

(

1−

(

M

M + 1

)α−1
)

x−(α−1)

≥
c

α− 1

(

M−(α−1) − (M + 1)
−(α−1)

)

x−(α−1).

Next assume that x ∈
[

aη−(x), bη−(x)

]

. If bη−(x) − x ≥ x, then

R(x) =

∫ ∞

x

F (y) dy ≥

∫ bη
−

(x)

x

cy−αdy (8)

≥ c

∫ 2x

x

y−αdy =
c
(

1− 2−(α−1)
)

α− 1
x−(α−1).

Finally, if bη−(x) − x < x, then as in (6)

aη+(x)

x
≤

aη+(x)

bη−(x)/2
≤ 2M,

from which it follows that, as for (7),

R(x) ≥
c

α− 1
2−(α−1)

(

M−(α−1) − (M + 1)
−(α−1)

)

x−(α−1). (9)

The bound (5) follows from (7), (8) and (9). This shows that the long range dependence impact on

performance will be at least as bad as if the autocovariance has polynomial decay of order α. We speculate

that practical effects will be even worse. While we have not derived the mathematics of this, if the wobbly

tail index induces wobbly correlations, then varying memory lengths could seriously affect performance.

This is an interesting area fro future work.

5 Conclusions

This paper has made two major contributions of interest to the networking community.
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First, a number of useful techniques are presented for the study of heavy tailed distributions in network

modeling. The concepts of extreme, far and moderate tail regions facilitate understanding of how sampling

variation affects this modelling. Simulation, combined with appropriate graphical display, is useful for

identifying these regions. Mixture models provide a natural method for finding interpretable subpopulations.

Mixtures of 3 double Pareto log-normals accurately model HTTP response sizes.

Second, the classical theory of heavy tail durations leading to long range dependence is generalized in

a well motivated and relevant direction. The data analysis suggests that a serious gap in the relevance of

the classical theory is the assumption of a fixed tail index, central to the usual definition of heavy tailed.

This problem is overcome using the more realistic concept of variable tail index, and a more general theory

is established in which this improved notion of heavy tailed is shown to still lead to long-range dependence,

in terms of polynomial decay of the autocovariance function.
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